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Abstract— Transmit channel side information (CSIT) can sig-
nificantly increase MIMO wireless capacity. Due to delay in
acquiring this information, however, the time-selective fading
wireless channel often induces incomplete, or partial, CSIT.
In this paper, we first construct a dynamic CSIT model that
takes into account channel temporal variation. It does so by
using a potentially outdated channel measurement and the
channel statistics, including the mean, covariance, and temporal
correlation. The dynamic CSIT model consists of an effective
channel mean and an effective channel covariance, derived as
a channel estimate and its error covariance. Both parameters
are functions of the temporal correlation factor, which indicates
the CSIT quality. Depending on this quality, the model covers
smoothly from perfect to statistical CSIT.

We then summarize and further analyze the capacity gains and
the optimal input with dynamic CSIT, asymptotically at low and
high SNRs. At low SNRs, dynamic CSIT often multiplicatively
increases the capacity for all multi-input systems. The optimal
input is typically simple single-mode beamforming. At high
SNRs, for systems with equal or fewer transmit than receive
antennas, it is well-known that the capacity gain diminishes to
zero because of equi-power optimal input. With more transmit
than receive antennas, however, the capacity gain is additive. The
optimal input then is highly dependent on the CSIT. In contrast
to equi-power, it can drop modes for channels with a strong
mean or strongly correlated transmit antennas. For such mode-
dropping at high SNRs in special cases, simple conditions on the
channel K factor or the transmit covariance condition number
are subsequently quantified.

Next, using a convex optimization program, we study the
MIMO capacity with dynamic CSIT non-asymptotically. Particu-
larly, we numerically analyze effects on the capacity of the CSIT
quality, the relative number of transmit and receive antennas,
and the channel K factor. For example, the capacity gain based
on dynamic CSIT is more sensitive to the CSIT quality at higher
qualities. The program also helps to evaluate a simple, analytical
capacity lower-bound based on the Jensen optimal input. The
bound is tight at all SNRs for systems with equal or fewer
transmit than receive antennas, and at low SNRs for others.

Index Terms— Capacity, MIMO wireless, partial CSIT, corre-
lated Rician fading, temporal correlation.
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I. INTRODUCTION

W ITH PERFECT channel information at the receiver,
channel side information at the transmitter (CSIT)

can significantly increase MIMO channel capacity. Assuming
frequency-flat fading, this benefit comes from the spatial chan-
nel dimension. In contrast to temporal CSIT, which provides
diminishing capacity gain at medium-to-high SNR [1], spatial
CSIT can enhance channel capacity in both low and high SNR
regions, depending on the relative number of antennas. For
example, in a 4-transmit 2-receive antenna system, perfect
CSIT doubles the capacity at -5dB SNR and adds 2bps/Hz
additional capacity at 15dB SNR [2]. Perfect spatial CSIT has
been analyzed for fading channels in both ergodic and outage
capacities, showing significant capacity gains [3], [4]. These
gains promise valuable increase in the transmission rate of
wireless systems.

The time-varying nature of the wireless channel, coupled
with the inherent delay in CSIT acquisition, however, often
induces partial CSIT. To account for the channel temporal
variation, we explicitly formulate a dynamic CSIT model, by
combining a potentially outdated channel measurement with
the channel statistics. The formulation allows evaluating the
CSIT based on the channel temporal correlation factor ρ,
which is a function of the delay and the channel Doppler
spread. When ρ = 1, the CSIT is perfect; when ρ → 0,
the CSIT approaches the actual channel statistics. Specifically,
dynamic CSIT consists of an estimate of the channel at
the transmit time and the associated error covariance, which
function effectively as the channel mean and the channel
covariance, respectively.

To establish the capacity with dynamic CSIT, it is necessary
to find the optimal input signal. For memoryless channel
with perfect channel information at the receiver, the optimal
input is Gaussian distributed with zero-mean [5]. Therefore,
the objective remains to find its optimal covariance. This
covariance eigenvectors function as transmit beam directions,
and the eigenvalues as the beam power allocation. For dynamic
CSIT, involving a non-zero effective channel mean and a non-
trivial effective channel covariance, the capacity optimization
problem involves evaluating an expectation over the non-
central Wishart distribution. Solutions exist partially only for
special cases: covariance CSIT, when the channel covariance
is non-trivial but the mean is zero [6], [7], and mean CSIT,
when the channel mean is non-zero but the covariance is
the identity matrix [8], [9]. In these cases, the optimal beam
directions are known analytically (as the eigenvectors of the
mean or covariance matrix), but not the power allocation. The
latter usually requires numerical optimization, where efficient
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iterative algorithms exist for covariance CSIT [10] and mean
CSIT [11].

After formulating the capacity with dynamic CSIT, we
first analyze the optimal input covariance and the capacity
gain from the CSIT asymptotically at low and high SNRs.
Asymptotic MIMO capacity have been studied by various
authors. We summarize some of the existing results in the
context of capacity gain and develop new results on optimal
mode-dropping at high SNRs. Specifically, at low SNRs, the
optimal input typically becomes simple single-mode beam-
forming, and the capacity gain is multiplicative [12]. At high
SNRs, the optimal solution depends on the relative numbers
of transmit and receive antennas. For systems with equal or
fewer transmit than receive antennas, it is well-known that
the optimal input approaches equi-power and the capacity gain
diminishes to zero. For others, however, both the optimal input
and the capacity gain depend heavily on the CSIT. In contrast
to equi-power, the optimal input may drop modes at high
SNRs in systems with more transmit than receive antennas.
We establish conditions for mode dropping for representative
channels with a high K factor or strong transmit antenna
correlation. These conditions provide intuition to when it is
optimal to activate only a fraction of the available eigen-modes
at all SNRs, given the CSIT. In such cases, CSIT provides an
additive capacity gain at high SNRs.

Fortunately, capacity optimization with dynamic CSIT is
a convex problem, hence allowing efficient numerical imple-
mentation [13]. Using the program in [14], we study the
non-asymptotic capacity impacts of the channel mean, the
transmit covariance, the CSIT quality, and the K factor. The
program also helps evaluate a sub-optimal input covariance,
which maximizes Jensen’s bound on capacity, and establish
conditions with which, using this covariance creates a tight
lower-bound to the capacity, hence allowing a simple, analyt-
ical capacity approximation.

The paper is organized as follows. Section II discusses
the wireless channel model. Section III then establishes the
dynamic CSIT model. Section IV formulates the channel
capacity with dynamic CSIT. Asymptotic capacity results are
analyzed in the next two sections. Section V establishes the
capacity gains at low and high SNRs, and Section VI charac-
terizes the optimal input. Numerical capacity results follow in
Section VII. Section VIII then provides the conclusion.

Notation used in this paper is as follows. (.)∗ for conjugate
transpose, E[.] for expectation, tr(.) for trace, ||.||F for the
Frobenius norm, λ(.) for eigenvalues, (.)+ for a positive
value inside the parenthesis or zero, and � for the matrix
positive semi-definite relation. Matrices are denoted by bold-
face capital letters, and their vectorized version is denoted
by the corresponding lower-case letter in bold-face, with any
subscript carried through (for example, h0 = vec(H0)).

II. CHANNEL MODEL

Consider a frequency flat, quasi-static block fading channel
with N transmit and M receive antennas. The channel can be
modeled as a complex Gaussian process, represented by a ma-
trix Hs of size M ×N , with s indicating the time. Assuming
that the channel is stationary, it can be specified by its time-
invariant mean, covariance, and auto-covariance. Specifically,

omitting the time subscript for brevity, the channel H can be
decomposed as into fixed and variable parts as

H = Hm + H̃ , (1)

where Hm is the complex channel mean, and H̃ is a zero-
mean complex Gaussian random matrix.

A. Channel covariance and antenna correlations

The channel covariance R0 captures the spatial correlation
among all the transmit and receive antennas. In other words,
it defines the correlation among all MN channel elements as
a MN × MN matrix

R0 = E
[
h̃h̃∗] , (2)

where h̃ = vec(H̃), and (.)∗ denotes a conjugate transpose.
R0 is a positive semi-definite Hermitian matrix. Its diagonal
elements represent the power gain of the MN scalar channels,
and the off-diagonal elements are the cross-coupling between
these scalar channels.

The covariance R0 sometimes assumes a simple Kronecker
structure with separable transmit and receive antenna correla-
tions [15]. The channel covariance can now be decomposed
as

R0 = RT
t ⊗ Rr , (3)

where ⊗ denotes the Kronecker product [16]. Both Rt and Rr

are complex Hermitian positive semi-definite. The channel (1)
can then be written as

H = Hm + R1/2
r HwR1/2

t , (4)

where Hw is a M × N matrix, whose entries have the real
and imaginary parts independent and identically distributed
as zero-mean Gaussian with unit-variance. Here R1/2

t is the
unique square-root of Rt, such that R1/2

t R1/2
t = Rt; similarly

for R1/2
r .

The Kronecker correlation model has been experimentally
verified in indoor environments for up to 3 × 3 antenna
configurations [17], [18], and in outdoor environments for up
to 8 × 8 configurations [19]. Other more general covariance
structures have been proposed in the literature [20], [21],
where the transmit covariances corresponding to different
reference receive antennas are assumed to have the same
eigenvectors, but not necessarily the same eigenvalues; simi-
larly for the receive covariances.

B. Channel mean and the Rician K factor

The channel mean Hm (M ×N ) is the fixed component of
the channel, usually corresponding to a line-of-sight propaga-
tion path or a cluster of strong paths, obtained as

Hm = E[H] . (5)

The elements of the mean can have different amplitudes and
arbitrary phase. The strength of a channel mean can be loosely
quantified by the Rician K factor. It defines the ratio of the
power in the channel mean and the average power in the
channel variable component as

K =
||Hm||2F
tr(R0)

, (6)
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where ||.||F is the matrix Frobenius norm, and tr(.) is the
trace of a matrix. The K factor can take any real value
between 0 and infinity. When K = 0, the channel has Rayleigh
distribution, otherwise it is Rician fading. When K → ∞,
the channel becomes deterministic. Measurements of fixed
broadband channels have shown that the K factor can have
a wide range from 0 to up-to 30dB in practice, and it tends
to decrease with the distance between the transmitter and the
receiver [22].

C. Channel auto-covariance and the Doppler spread

The channel auto-covariance characterizes how rapidly the
channel decorrelates with time. Because of the stationarity
assumption, the covariance between two channels samples
H0 and Hs depends only on the time difference but not the
absolute time

Rs = E
[
h̃0h̃∗

s

]
, (7)

where h̃ denotes the vectorized version of the zero-mean part
of the corresponding channel matrix. Note that when s = 0,
this auto-covariance coincides with the channel covariance R0

(2); when s becomes large, it eventually decays to zero.
For a MIMO channel, the covariance R0 captures the spatial

correlation between all the transmit and receive antennas,
while the auto-covariance at a non-zero delay Rs captures
both channel spatial and temporal correlations. Based on the
premise that the channel temporal statistics can be the same
for all antenna pairs, it may be assumed that the temporal
correlation is homogeneous and identical for any channel
element. Then, the two correlation effects are separable, and
the channel auto-covariance becomes their product as

Rs = ρsR0 , (8)

where ρs is the temporal correlation of a scalar channel. In
other words, all the MN scalar channels between the M
transmit and N receive antennas have the same temporal
correlation function. This correlation is a function of the time
difference s and the channel Doppler spread. For example, in
Clark’s model, ρs = J0(2πfds), where J0 is the zeroth order
Bessel function of the first kind, and fd is the Doppler spread
[23]. Similar assumptions for MIMO temporal correlation
have also been used in constructing channel models and
verifying measurement data in [18], [21].

The channel statistics, Hm, R0 and Rs, can be obtained
by averaging instantaneous channel measurements over tens
of channel coherence times; they remain valid for a period of
tens to hundreds coherence time, during which, the channel
can be considered as stationary.

III. DYNAMIC CSIT

A. CSIT acquisition

While a receiver can directly estimate the channel from
the received signal, the transmitter must obtain channel infor-
mation indirectly by using the reverse-channel information,
relying on the reciprocity principle, or by feedback from
the receiver. Reciprocity applies to the “over-the-air” channel
between the transmit and receive antennas and requires the
forward and reverse links to occur at the same time, frequency,

and space instance. In practice, it requires careful hardware
calibration to make the transmit and receive RF chains iden-
tical and is usually applicable only in time-division-duplex
(TDD) systems with small turn-around time between the
reverse and forward transmissions [24]. Feedback can be
used in both time and frequency division-duplex systems,
provided that the feedback lag is relatively small compared to
channel dynamics. In either case, there exists a delay between
measuring the channel information at a receiver and using
this information at the transmitter. This delay may affect the
reliability of the obtained channel information, depending on
the type of information.

Consider the channel statistics and instantaneous channel
measurements. In practice, the channel statistics often remain
unchanged for a relatively long time compared to the trans-
mission intervals. Assuming stationarity, these statistics are not
affected by the delay in channel acquisition, and hence become
reliable CSIT. Channel statistics, however, are only partial
information and therefore provide partial capacity gains. In
contrast, instantaneous channel information provides the high-
est capacity gain, but is sensitive to the CSIT acquisition
delay due to channel temporal variation. This delay leads
to a potential mismatch between the instantaneous channel
measurement and the current channel. For the purpose of
this paper, the initial channel measurement is assumed to be
accurate. The only cause of the mismatch then is channel
varying over the delay period.

More reliable and complete CSIT provides more capacity
gain. This principle suggests combining both the channel
statistics and instantaneous measurements to create a CSIT
model robust to channel variation, while optimally capturing
the potential gain.

B. CSIT modeling

Consider CSIT at the transmit time s in the form of a
channel estimate Ĥs and its error covariance Re,s, which can
be expressed as

Hs = Ĥs + Es ,
Re,s = E

[
ese∗s

] (9)

where Es is the zero-mean estimation error and es =
vec (Es). Assuming unbiased estimates, Es can be modeled
as a stationary Gaussian random process. The error covariance
Re,s is then dependent on s and the Doppler spread.

Now assume that the transmitter has an initial channel
measurement H0 at time 0, together with the channel statistics
Hm, R0, and Rs. Furthermore, the channel matrix coefficients
are jointly Gaussian. Based on MMSE estimation theory [25],
an optimal estimate of the channel at time s and the estimation
error covariance can be established as

ĥs = E
[
hs|h0

]
= hm + R∗

sR
−1
0

[
h0 − hm

]
Re,s = cov

[
hs|h0

]
= R0 − R∗

sR
−1
0 Rs ,

(10)

where ĥs = vec
(
Ĥs

)
(again the lower-case letters h denote

the vectorized version of the corresponding upper-case matri-
ces H). A similar model was proposed in [26] for estimating
a scalar time-varying channel from a vector of out-dated
estimates. CSIT formulations conditioned on noisy channel
estimates were also studied in [27], [28].
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The two quantities {Ĥs,Re,s} constitute the CSIT. They
effectively function as a new channel mean and covariance.
Thus Ĥs and Re,s are also referred to as the effective mean
and effective covariance, respectively, and the pair forms an
effective statistics.

We next apply the simplified temporal correlation model
(8). This model helps to isolate the effect of temporal channel
variation on the CSIT; it has also been used to fit data in some
channel measurements [18], [21]. The channel estimate and its
error covariance then become

Ĥs = ρsH0 + (1 − ρs)Hm ,
Re,s =

(
1 − ρ2

s

)
R0 .

(11)

The CSIT can now be simply characterized as a function of
ρs, the initial channel measurement H0, and the channel mean
Hm and covariance R0. The channel estimate becomes a
linear combination between the initial measurement and the
channel mean. The error covariance is a linear function of the
channel covariance alone. With Kronecker antenna correlation
(3), the transmit and receive covariances are separable. For
the estimated channel, the effective antenna correlations can
be decomposed as

Rt,s =
√

1 − ρ2
s Rt ,

Rr,s =
√

1 − ρ2
s Rr ,

(12)

which again follow a Kronecker structure. Since the scaling
factors ultimately affect the received power, this decomposi-
tion is for convenience from the analysis and signal processing
perspectives. When the antennas at the receiver are uncorre-
lated, Rr = I, then the effective channel is also assumed
to have no receive correlation (Rr,s = I), and the effective
transmit correlation becomes

Rt,s =
(
1 − ρ2

s

)
Rt . (13)

In the constructed CSIT models (11), (12) and (13), ρs

acts as a channel estimate quality dependent on the time
delay s. For a zero or short delay, ρs is close to one; the
estimate depends heavily on the initial channel measurement,
and the error covariance is small. As the delay increases,
ρs decreases in magnitude to zero, reducing the impact of
the initial measurement. The estimate then moves toward the
channel mean Hm, and the error covariance grows toward the
channel covariance R0. Therefore, the estimate and its error
covariance (11) constitute a form of CSIT, ranging between
perfect channel knowledge (when ρ = 1) and the channel
statistics (when ρ = 0). By taking into account channel
time variation, this framework optimally captures the available
channel information and creates a dynamic CSIT model.

C. Special CSIT cases

Here we define the terminology for several special cases of
dynamic CSIT. When ρ = 1, it is perfect CSIT. When 0 ≤
|ρ| < 1, it is partial CSIT, consisting of an effective channel
mean and an effective covariance. For ρ = 0, the CSIT is
referred to as statistical CSIT. If either the mean or covariance
is trivial, then the CSIT collapses to a special case. When
the covariance is arbitrary but the mean is zero (Hm = 0),
we have covariance CSIT. More specifically, transmit antenna

correlation alone (without receive correlation) gives transmit
covariance CSIT. When the mean Hm is arbitrary but the
covariance is an identity matrix (R0 = I), we have mean
CSIT. Finally, when ρ = 0, Hm = 0, and R0 = I, we have
no CSIT, equivalent to an i.i.d Rayleigh fading channel with
no channel information at the transmitter.

IV. CHANNEL ERGODIC CAPACITY WITH DYNAMIC CSIT

Consider the ergodic capacity of a MIMO channel with
a constant sum power across all transmit antennas at every
time instance. Assume perfect channel state information at
the receiver (CSIR) and dynamic CSIT (11) with a given
estimate quality ρ. With perfect CSIR, the capacity is achieved
by a zero-mean complex Gaussian input [5] with covariance
dependent on the CSIT. With dynamic CSIT, this optimal input
covariance and the ergodic capacity are obtained by two-stage
averaging.

In the first stage, each initial channel measurement H0

with estimate quality ρ produces CSIT value {Ĥ,Re} (11).
The channel seen from the transmitter thus effectively has
mean Ĥ and covariance Re. Assuming that this effective
statistics is valid for a reasonable duration, and using a zero-
mean Gaussian input with covariance Q, we can then cal-
culate the average mutual information given H0 as I(H0) =
EH [logdet(I + γHQH∗)]. The signal covariance Q that max-
imizes I(H0) is the optimizer of the problem

Io(H0) = maxQ EH

[
logdet(I + γHQH∗)

]
subject to

tr(Q) = 1
Q � 0 ,

(14)

where γ is the SNR. The equality constraint results from
the constant sum transmit power, and the inequality from the
positive semi-definite property of a covariance matrix. Note
that the expectation is evaluated over the effective channel
statistics with mean Ĥ and covariance Re.

In the second stage, based on ergodicity, we can average
Io(H0) over the distribution of H0 to obtain the channel
ergodic capacity. For a given CSIT quality ρ, therefore, the
capacity is

C = EH0 [Io(H0)] , (15)

where H0 has the actual channel statistics, Gaussian dis-
tributed with mean Hm and covariance R0.

Establishing the capacity with dynamic CSIT thus essen-
tially requires solving (14). This problem is to find the optimal
input covariance and capacity for a channel with statistical
CSIT, involving arbitrary channel mean and covariance. Note
that the input covariance can be decomposed into its eigen-
values and eigenvectors as

Q = UQΛQUQ . (16)

The columns of UQ function as orthogonal eigen-beam di-
rections (patterns), and ΛQ represents the power allocation
on these beams. The problem has analytical solution for the
eigenvectors UQ in special cases of mean CSIT and covari-
ance CSIT. For mean CSIT, UQ is given by the right singular-
vectors of the mean matrix [8], [9]. For covariance CSIT, it
is by the eigenvector of the transmit antenna correlation [6],
[7]. For a non-Kronecker covariance, however, analytical result
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for UQ is so far scarce. A general condition on the channel
structure for isotropic input to achieve the capacity is given in
[10]. In all cases of partial CSIT, the eigenvalue ΛQ has no
closed-form solution and usually requires numerical solution.
Fortunately, the optimization problem is convex, allowing
efficient numerical solutions for all CSIT cases [10], [11], [14].

A. The Jensen-optimal input covariance

Here we discuss a lower-bound on the capacity by using
a sub-optimal input covariance. Consider QJ that maximizes
Jensen’s bound on the mutual information. The Jensen bound
on the average mutual information is

E [log det(I + HQH∗)] ≤ log det (I + E[H∗H]Q) .

Given CSIT, the transmitter can establish G = E[H∗H]. The
covariance QJ is then obtained by standard water-filling [5]
on G. Using the Jensen covariance QJ as the input covariance
results in a Jensen mutual information value

IJ = I(QJ ) , (17)

satisfying IJ ≤ Io in (14). For statistical CSIT, IJ can be used
to lower-bound the capacity. For dynamic CSIT, averaging IJ

over the initial channel measurement distribution (15), a lower
bound to the channel ergodic capacity is obtained as

CJ = EH0 [IJ ] . (18)

The tightness of this capacity lower bound will be numerically
evaluated in Section VII.

V. ASYMPTOTIC-SNR CAPACITY GAINS

This section summarizes the analytical results on the asymp-
totic capacity gains from dynamic CSIT at low and high SNRs.
Most of these results are simple and have been derived in
one form or another by various authors. Here we cast them
in a common context of asymptotic capacity gains, thereby
connecting these results and identifying the open problems,
which we will provide a partial solution to in the next section.

In particular, the asymptotic capacity gain at low SNRs
is multiplicative and is achieved typically by single-mode
beamforming. The gain at high SNRs is additive and requires
multi-mode transmission. These gains also depend on the
CSIT.

A. Low-SNR optimal beamforming and capacity gain

1) Low-SNR optimal beamforming: The optimal signal at
low SNRs is typically single-mode beamforming with the
direction given by the CSIT.

Theorem 1: (Verdú [12]) As the SNRs γ → 0, the optimal
input covariance of problem (14) converges to a rank-one ma-
trix with a unit eigenvalue and the corresponding eigenvector
given by the dominant eigenvector of

G = E[H∗H] ,

provided the dominant eigenvalue is unique. In other words,
the optimal input becomes a single-mode beamforming signal
along the dominant eigenvector of G. If there are multiple

dominant eigenvalues of G, the transmit power must split
equally among their eigenvector directions.

Note that for the channel model (3) without receive antenna
correlation, G = E[H∗H] = Ĥ∗Ĥ + MRt,s. With dynamic
CSIT, the optimal beam direction changes with each update of
H0 and ρ. This theorem can be proved by a simple application
of the Taylor expansion to I(H0) in (14).

When G has multiple dominant eigenvalues, considering
wideband transmission, equally distributing power among
them minimizes the wideband slope (the derivative of the
capacity at the minimum bit energy point), hence minimizing
the required bandwidth [12]. In the i.i.d. case when G is a
scaled-identity matrix, distributing power equally is in fact
capacity optimal for all SNRs [29], [30].

2) Low-SNR capacity ratio gain with statistical CSIT: With
the optimal input at low SNRs, the capacity gain with statis-
tical CSIT is multiplicative and can be quantified precisely.

Theorem 2: As the SNR γ → 0, the ratio between the
optimal mutual information in (14) and the value obtained
by equi-power isotropic input approaches

r =
Nλmax(G)

tr(G)
. (19)

This ratio scales linearly with the number of transmit antennas
and is related to the condition of the channel correlation
matrix G = E[H∗H].

The derivation of this result is quite straightforward [12]
(see Eqs. 52-53). The result implies that, at low SNRs, the
transmitter has little power, and the CSIT allows it to focus
all this power on the strongest known direction in the channel,
rather than spreading it equally everywhere. More transmit
antennas will increase the focusing and hence the capacity
gain at low SNRs in (19). As an extreme example, when G
is rank-one, the ratio equals the number of transmit antennas
N .

For dynamic CSIT with a given quality ρ, each initial chan-
nel measurement H0 provides an effective channel correlation
G. The capacity gain is then obtained by averaging the ratio
(19) over the distribution of H0.

3) Low-SNR capacity ratio gain with perfect CSIT: Perfect
CSIT also multiplicatively increases the capacity at low SNRs.
Moreover, the asymptotic gain can be quantified in the limit
of a large number of antennas.

Theorem 3: As the SNR γ → 0, the ratio of the ergodic
capacity with perfect CSIT to that without CSIT equals

r =
E[λmax(H∗H)]
1
N E[tr(H∗H)]

, (20)

where the expectations are performed over the actual channel
distribution.

For an i.i.d channel, if the number of antennas increases to
infinity, provided the transmit to receive antenna ratio N/M
stays constant, this ratio approaches a fixed value as

r
N→∞−→

(
1 +

√
N

M

)2

. (21)

This limit is always greater than 1.
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Fig. 1. Ratio of the capacity of i.i.d channels with perfect CSIT to that
without CSIT. The legend denotes the numbers of transmit and receive
antennas. The asymptotic capacity ratio, in the limit of large number of
antennas, while keeping the number of transmit antennas twice the receive,
is 5.83.

Expression (20) is straightforward from Theorem 1 and
[29]. Expression (21) is implicitly derived in [12] (Eqs. 204-
205) and requires a simple application of the largest eigenvalue
result of large-dimension random matrices [31], [32].

Figure 1 shows examples of the capacity ratio for 4 channels
with twice the number of transmit as receive antennas. The
ratio increases as the SNRs decreases and as the number of
antenna increases. Keeping the antenna proportion the same,
as the number of antennas increases to infinity, this ratio
will approach 5.83. CSIT at low SNRs thus can increase the
capacity significantly.

B. High-SNR capacity gain

At high SNRs, the optimal input and the capacity gain
depend on the channel rank and the relative antenna configura-
tion. For full-rank channels, dynamic CSIT does not increase
the capacity at high SNRs for systems with equal or fewer
transmit than receive antennas (N ≤ M ), but does for systems
with more transmit antennas (N > M ). For rank-deficient
channels with a non-full-rank Rt, transmit covariance CSIT
always helps increase the capacity. Each case is considered
next.

1) Full-rank channels with equal or fewer transmit than
receive antennas: When N ≤ M , asymptotically at high
SNRs, it is well-known that isotropic input is optimal for
(14), independent of the CSIT (for example, the case N = M
is analyzed in [33]). For full-rank channel H, the condition
N ≤ M makes H∗H full-rank, hence I(H0) at high SNRs
can be decomposed as

I γ→∞≈ EH[log det(γH∗HQ)] (22)

= EH [log det(H∗H)] + log det(γQ) .

Maximizing this expression, subject to tr(Q) = 1, leads to
Q = I/N . For these systems, the capacity gain from CSIT
diminishes to 0 at high SNRs.

Fig. 2. Incremental capacity gain from perfect CSIT for i.i.d. channels. The
legend denotes the numbers of transmit and receive antennas.

2) Full-rank channels with more transmit than receive
antennas: On the contrary, when N > M , dynamic CSIT can
provide capacity gain at high SNRs. The gain here is additive.
Since H∗H is rank-deficient in this case, the decomposition
(22) does not apply. The optimal input covariance of (14)
at high SNRs depends on the channel statistics, or the CSIT
{Ĥ,Re}. An analytical optimal covariance for arbitrary Ĥ and
Re is still an open problem. In the next section, we provide
the solutions for some simplified cases.

The capacity gain in this case is maximum with perfect
CSIT (ρ = 1, Ĥ = H0, and R = 0), with which this gain
can be accurately quantified.

Theorem 4: For N > M , at high SNRs, the incremental
capacity gain from perfect CSIT (ρ = 1), over the mutual
information obtained by equi-power isotropic input, equals

∆C = M log
(

N

M

)
. (23)

This gain scales linearly with the number of receive antennas
and depends on the ratio of the number of transmit to receive
antennas.

Intuitively, with N > M , the channel seen from the trans-
mitter has a null-space. By knowing the channel, the trans-
mitter can avoid sending any power into this null-space and
therefore achieve a capacity gain. For example, for systems
with twice the number of transmit as receive antennas, the
capacity incremental gain approaches the number of receive
antennas in bps/Hz and can be achieved at an SNR as low as
20dB, as shown in Figure 2.

The derivation of this result is straightforward. Although
the ingredients used in proving the result have been used by
different authors in different contexts (e.g. see [34] for large
antenna analysis, and [35] for power offset analysis), we are
not aware of a proof prior to [36] and hence provide one here
for completeness.

Proof. With perfect CSIT, the solution for (14) is
standard water-filling on H∗

0H0 [5]. Let σ2
i be the

eigenvalues of H∗
0H0, then the optimal eigenvalues of

Q are λi =
(
µ − 1

γσ2
i

)
+

, where µ is chosen to satisfy
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∑
i λi = 1. The ergodic capacity (15) then becomes C =∑M
i=1 Eσi

[
log

(
µγσ2

i

)]
, where σ2

i has the distribution of
the underlying Wishart matrix eigenvalues. For full-rank
H0, as γ → ∞, µ → 1

M , and the capacity approaches

C γ→∞≈ M log
(

1
M

)
+ M log(γ) +

M∑
i=1

E
[
log

(
σ2

i

)]
.

(24)
Without CSIT, on the other hand, using an equi-
power isotropic input with covariance Q = I/N ,
the ergodic mutual information is given by C0 =∑M

i=1 Eσi

[
log

(
1 + 1

N γσ2
i

)]
. At high SNRs, this expres-

sion approaches

C0

γ→∞≈ M log
(

1
N

)
+ M log(γ) +

M∑
i=1

E
[
log

(
σ2

i

)]
.

(25)
Subtracting (24) and (25) side-by-side yields the capacity
gain in (23). �

3) Rank-deficient channels with a non-full-rank Rt: We
now consider channels with rank-deficient Rt, zero mean and
uncorrelated receive antennas. In this case, transmit covariance
CSIT helps increase the capacity additively at high SNRs,
regardless of the number of receive antennas. Let Kt be the
rank of Rt (Kt < N ), this capacity gain can be quantified in
the case Kt ≤ M as

∆C = Kt log
(

N

Kt

)
. (26)

The derivation of this result is as follows. For transmit
covariance CSIT, the optimal input beam directions are given
by Rt eigenvectors. The mutual information can then be
written as

I = log det (IM + γHwΛtΛQH∗
w)

= log det (IN + γH∗
wHwΛtΛQ) ,

where Λt is the eigenvalue matrix of Rt. With Kt ≤ M ,
the matrix H∗

wHwΛt has rank Kt, hence at high SNRs,
the optimal ΛQ approaches equi-power on the Kt non-zero
eigenmodes of Λt. (Note that this equi-power input is not
always optimal at high SNRs if Kt > M , but a capacity gain
still exists.) Without the CSIT, however, the optimal input has
equi-power on all N eigenmodes of Rt. The difference in the
corresponding mutual information then gives (26), similar to
the proof of Theorem 4.

Figure 3 provides an example of the capacity with and
without transmit covariance CSIT for rank-one correlated
channels with various antenna configurations at 10dB SNR.
The capacity without CSIT plus the gain (26) is also included.
Note that for rank-one correlation, having more transmit an-
tennas helps to increase the capacity with transmit covariance
CSIT, but does not without the CSIT.

VI. OPTIMAL INPUT CHARACTERIZATIONS

The capacity-optimal input signal with dynamic CSIT can
be analytically established in certain cases. At low SNRs, as
specified in Theorem 1, it is single-mode beamforming with
direction as a function of CSIT, implying mode-dropping.

Fig. 3. Capacity of channels with a rank-one transmit correlation at SNR =
10dB, without and with transmit covariance CSIT.

At high SNRs, the optimal input depends not only on the
CSIT, but also on the antenna configurations. For systems
with equal or fewer transmit than receive antennas, the optimal
input approaches isotropic equi-power. For systems with more
transmit than receive antennas, however, it may not approach
equi-power at high SNRs, depending on the CSIT. Specifically,
for statistical CSIT with a high-K mean or highly-conditioned
transmit covariance, signifying a strong antenna correlation,
mode-dropping may also occur at high SNRs. The intuition
can be obtained by considering a 4× 2 channel with different
CSIT scenarios. With perfect CSIT, the optimal input has only
2 eigen-modes at high SNRs. Without CSIT, however, the
optimal input is i.i.d isotropic, which has 4 modes. Therefore
there exists partial CSIT, with which the optimal input has 3
modes at high SNRs, implying mode-dropping.

In this section, we consider impacts of antenna configura-
tions and the CSIT on the optimal input covariance. We first
briefly discuss the optimal input for systems with N ≤ M . We
then provide simplified analysis on the conditions for mode-
dropping at high SNRs in systems with N > M . Two effects
are considered: of the K factor and of the transmit antenna
correlation. To isolate each effect, a simplified channel model
is used in each case.

A. Systems with equal or fewer transmit than receive antennas

For N ≤ M systems with dynamic CSIT, the optimal input
signal is known asymptotically at both low and high SNRs. At
low SNRs, it is single-mode beamforming, and at high SNRs,
it approaches equi-power. Interestingly, it turns out that the
optimal input covariance here can be closely approximated by
the closed-form Jensen input covariance discussed in Section
IV-A (see Section VII for numerical verification). This Jensen
covariance becomes optimal at both low and high SNRs.
At other SNRs, it produces a mutual information that is a
tight lower-bound to the capacity. For the two special cases,
transmit covariance CSIT and mean CSIT, the Jensen beam
directions are optimal at all SNRs; only the power allocation
is then approximated.
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B. Systems with more transmit than receive antennas

For N > M systems with dynamic CSIT, the capacity-
optimal input, especially its power allocation, depends heavily
on the channel effective mean and covariance matrices. If the
channel is uncorrelated with zero mean, as with i.i.d Rayleigh
fading, then the optimal input covariance is the identity matrix
at all SNRs [29], implying equi-power allocation. However,
if the mean is strong, characterized by a high K factor, or
the transmit antennas are highly correlated, characterized by
a large condition number of Rt, the optimal input may drop
modes even at high SNRs. A closed-form solution for the
optimal input covariance, as a function of the channel mean
and covariance, is still unknown. Furthermore, the Jensen
covariance, which approaches equi-power at high SNRs, is
no longer a good approximation.

This section provides some simple characterizations on
effects of the K factor and the transmit antenna correlation
on the optimal input. The analysis focuses on two simple
channel models, belonging to the special mean CSIT and
covariance CSIT cases. Of these, the optimal beam directions
are known [6]-[9], thus only the power allocation needs to
be specified. Each considered model results in the optimal
allocation with only two distinct power levels. Conditions that
lead to dropping the lower power level at high SNRs are
analyzed.

1) Effects of the K factor: In an uncorrelated channel
with N > M , given statistical CSIT, as K increases from
0 to infinity, the optimal number of input modes at high
SNRs reduces from N to M . Thus, a sufficiently high K
will result in less than N optimal modes. The mode-dropping
effect, however, depends more broadly on the channel mean
eigenvalues, of which K is a function. To isolate the impact
of K alone, consider an uncorrelated channel, in which the
channel mean has equal eigenvalues and hence is unitary. In
practice, such a mean may be found in an isotropic channel as
the measured channel mean, which changes slowly over time,
or as a channel estimate. With this channel mean structure, the
power allocation depends solely on K , but not the entire Hm.
The threshold for K , above which mode dropping occurs at
high SNRs, can be obtained as follows.

Theorem 5: Consider a channel with N > M , uncorrelated
antennas, and unitary channel mean. Specifically, the mean
and transmit covariance are given as

HmH∗
m =

K

K + 1
IM , Rt =

1
K + 1

IN (27)

and the receive covariance is Rr = I.
With statistical CSIT, the condition on K , with which the

optimal input activates only M out of the maximum N modes
at all SNRs, is given as

tr

⎛
⎜⎝E

⎡
⎢⎣
⎛
⎝ M∑

j=1

(√
Kej + hw,j

)(√
Kej + h∗

w,j

)⎞⎠
−1

⎤
⎥⎦
⎞
⎟⎠ ≤ 1,

(28)
where ei is the M -vector with the ith element equal to 1 and

the rest zero, and hw,j ∼ N (0, IM ) are i.i.d.
The matrix expression under expectation in (28) has the

inverted non-central complex Wishart distribution. This expec-

tation has no closed-form solution so far, but can be evaluated
numerically.

Proof: Given mean and transmit covariance (27), let
β =

√
K/(K + 1), and perform the SVD of the mean

as
Hm = βUmV∗

m , (29)

then the optimal beam directions are given by Vm. The
optimal power allocation can be completely character-
ized by the K factor, or β, and the SNRs. Because
of symmetry, this optimal solution contains only two
different power levels: λ1 for the first M eigen-modes,
corresponding to the non-zero eigen-modes of H∗

mHm,
and λ2 for the rest N −M modes, where λ1 ≥ λ2 [37].
Thus the optimal solution Q for problem (14) has the
form

Q = VmΛQV∗
m , (30)

where ΛQ is a diagonal matrix with M diagonal entries
as λ1 and N − M as λ2. Let H̃ be the zero-mean
part of U∗

mHVm, then its N columns are i.i.d. with
the distribution h̃j ∼ N (

0, (1 − β2)IM

)
. The first M

columns of U∗
mHVm can then be expressed as gi =

βei + h̃i, 1 ≤ i ≤ M . Problem (14) can now be written
as (31). Of interested is the condition on K (or β) that
results in the optimal λ�

1 = 1/M and λ�
2 = 0, implying

mode-dropping. Based on the convexity of this problem,
the sufficient and necessary condition for this optimality
is

tr

⎛
⎜⎝Eh̃j

⎡
⎢⎣
⎛
⎝I +

γ

M

M∑
j=1

(βej + h̃j)(βej + h̃j)∗

⎞
⎠

−1
⎤
⎥⎦
⎞
⎟⎠

≤ M

1 + γ (1 − β2)
, (32)

where h̃j ∼ N (
0, (1 − β2)IM

)
. The derivation is given

in Appendix A. This condition depends on M , β and γ
and can be evaluated numerically. The condition, how-
ever, is independent of the number of transmit antennas
N . From this condition, a threshold for K , above which
mode-dropping occurs, can be established. As γ → ∞,
it becomes (28), which signifies mode-dropping at all
SNRs. �

The threshold (32) is independent of the number of transmit
antennas N . Thus if the channel mean is strong enough, the
rank of this mean will dictate the number of active modes,
regardless of the larger number of antennas. Figure 4 provides
examples of this K factor threshold versus the SNR, derived
from (32), for systems with 2 receive- and more than 2
transmit-antennas. When K is above this threshold, signifying
a strong channel mean or a good channel estimate, the optimal
power allocation activates only two modes and drops the rest
at all SNRs.

2) Effects of the transmit antenna correlation: In a zero-
mean channel, the condition number of the transmit covariance
matrix Rt can influence the number of optimal input modes.
When the condition number is 1, corresponding to an identity
covariance matrix, all N transmit modes are active. When
the condition number is infinite, implying a rank-deficient
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maxλ1,λ2 E

[
log det

(
IM + λ1γ

M∑
i=1

(
βei + h̃i

)(
βei + h̃i

)∗
+ λ2γ

N∑
i=M+1

h̃ih̃∗
i

)]
(31)

subject to
Mλ1 + (N − M)λ2 = 1
λ1 ≥ 0, λ2 ≥ 0

Fig. 4. K factor thresholds for systems with 2 receive and more than 2
transmit antennas, above which using 2 modes is capacity-optimal for the
mean CSIT (27) at all SNRs.

covariance Rt, the number of active modes must be less
than N at all SNRs as no power should be allocated in
Rt null-space. Thus there must be a finite threshold for
Rt condition number, above which mode-dropping occurs at
all SNRs. Similar to the K factor, however, Rt condition
number is only a function of the eigenvalues, on which
the optimal input power allocation depends. To isolate the
impact of Rt condition number, consider a zero-mean channel
with a transmit covariance matrix having only two distinct
eigenvalues. The threshold on this matrix condition number for
mode-dropping at all SNRs is given in the following theorem.

Theorem 6: Consider a zero-mean channel (Hm = 0)
with correlated transmit antennas and uncorrelated receive
antennas. Furthermore, the transmit covariance matrix has
the eigen-value decomposition as

Rt = Ut diag (ξ1 . . . ξ1 ξ2 . . . ξ2) U∗
t , (33)

where L eigenvalues equal ξ1 and N − L equal ξ2, provided
N > L > M and ξ1 > ξ2 > 0. With statistical CSIT, the
threshold for Rt condition number, κ = ξ1/ξ2, above which
mode-dropping occurs at all SNRs, is given as

κ ≥ L

L − M
. (34)

This condition requires N ≥ M + 2.

Proof: Given zero channel mean and transmit covariance
(33), the optimal input covariance Q has the eigenvectors
given by Ut [6], [7]. Again because of symmetry, the
optimal power allocation has only two levels: λ1 for the
L eigen-modes corresponding to the L larger eigenvalues

of Rt, and λ2 for the rest N −L modes. The optimal Q
therefore has the eigenvalue decomposition as

Q = UtΛQU∗
t , (35)

where ΛQ is a diagonal matrix with L diagonal entries
as λ1 and N − L as λ2.
From (4), the channel can be written as H = HwRt.
Let H̃ = HwUt, then the columns of H̃ are i.i.d with
distribution h̃i ∼ N (0, IM ) for 1 ≤ i ≤ N . The mutual
information optimization problem (14) is now equivalent
to (36). Of interest is the condition that results in λ2 = 0
and λ1 = 1/L.
Based on the problem convexity, the sufficient and nec-
essary condition for the optimal λ2 = 0 is

tr

⎛
⎜⎝Eh̃i

⎡
⎢⎣
⎛
⎝IM +

γξ1

L

L∑
j=1

h̃ih̃∗
i

⎞
⎠

−1

(γξ2 + 1)

⎤
⎥⎦
⎞
⎟⎠ ≤ M ,

(37)
where h̃j ∼ N (0, IM ). The derivation is given in
Appendix B. At high SNRs (γ → ∞), this condition
becomes

Lξ2

ξ1
tr

⎛
⎜⎝Eh̃i

⎡
⎢⎣
⎛
⎝ L∑

j=1

h̃ih̃∗
i

⎞
⎠

−1
⎤
⎥⎦
⎞
⎟⎠ ≤ M .

Noting that the matrix under expectation is an inverted
complex central Wishart matrix with rank M and L
degrees of freedom, which has the first moment as
IM/(L − M) [38], [39], the above condition results in
(34). This result requires L > M , and since N > L, this
relation implies N ≥ M +2. Thus, mode dropping at all
SNRs occurs only if N ≥ M + 2. Consequently, as the
SNR increases to infinity, the optimal power allocation
for this transmit covariance CSIT always activate at least
M + 1 modes. �

From (34), noting that L/(L−M) ≤ N −1, a looser bound
on Rt condition number for dropping the weaker eigen-modes
at all SNRs can be obtained as

κ =
ξ1

ξ2
≥ N − 1 . (38)

This condition can be used as the first check for mode-
dropping.

Figure 5 shows an example of the optimal power allocation
for a 4 × 2 zero-mean channel with transmit covariance
eigenvalues as [1.25 1.25 1.25 0.25], using the optimization
program in [14]. This covariance matrix has the condition
number κ = 5 > 3, satisfying (34). The optimal power
allocation therefore only activates 3 modes, dropping 1 mode,
at all SNRs. Note also that the Jensen power as water-filling
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maxλ1,λ2 E

⎡
⎣log det

⎛
⎝IM + γλ1ξ1

L∑
j=1

h̃ih̃∗
i + γλ2ξ2

N∑
j=L+1

h̃ih̃∗
i

⎞
⎠
⎤
⎦ (36)

subject to
Lλ1 + (N − L)λ2 = 1
λ1 ≥ 0 , λ2 ≥ 0 .

Fig. 5. Input power allocations for a 4×2 zero-mean channel with transmit
covariance eigenvalues [1.25 1.25 1.25 0.25]. Each allocation scheme
contains 4 power levels, corresponding to the 4 eigen-modes of the transmit
covariance. The optimal allocation has 3 equal modes, as does the Jensen
power at low SNRs. The fourth mode of the optimal scheme always has zero
power.

on E[H∗H] starts deviating from optimal at an SNR as low
as 8dB.

3) Remarks: The two conditions (28) and (34), although
specific to each respective channel and CSIT model, provide
intuition on effects of the channel mean and the transmit
antenna correlation on the optimal input power allocation.
They can provide an initial check for mode-dropping with
any CSIT by, for example, approximating the K factor using
the minimum nonzero eigenvalue of the channel mean, or
approximating Rt condition number by the ratio of its first
and second largest eigenvalues. Furthermore, the condition for
channels with both a non-zero mean and a transmit antenna
correlation are likely to be more relaxed, such that mode
dropping occurs at all SNRs for even a lower K factor and
a lower transmit covariance condition number. Subsequently,
channels with high K or strong transmit antenna correlation
tends to result in mode dropping with statistical CSIT at all
SNRs.

VII. NUMERICAL CAPACITY ANALYSIS

Establishing the capacity with dynamic CSIT for non-
asymptotic SNRs usually requires numerical computation. For
the special CSIT cases (mean CSIT or covariance CSIT), the
optimal beam directions are known analytically, and transmit
power optimization can be efficiently performed using an
iterative algorithm involving the MMSE of the data streams
transmitted on separate eigen-beams [10], [9]. For general
dynamic CSIT, however, the optimal beam directions are still

Fig. 6. Capacity and mutual information of a 4 × 4 system (above) and
the corresponding power allocations (below). The channel mean and transmit
covariance parameters are specified in Appendix C.

unknown, requiring an optimization for the whole covariance
matrix Q [14].

In this section, we use the program developed in [14] to
study the non-asymptotic MIMO capacity. We numerically
evaluate the Jensen input-covariance and the tightness of
the capacity lower bound (18). Then using this bound and
the optimization program, MIMO capacity is analyzed in
terms of various parameters: relative transmit-receive antenna
configuration, CSIT quality ρ, and the channel K factor.

A. Tightness of the capacity lower bound based on the Jensen
input covariance

This section discusses the tightness of the Jensen mutual
information (17) compared to the capacity, using statistical
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Fig. 7. Capacity and mutual information of a 4 × 2 system (above) and
the corresponding power allocations (below). The channel mean and transmit
covariance parameters are specified in Appendix C.

CSIT as a representative. Based on simulating a wide range of
channel parameters (number of antennas, mean and covariance
matrices), we observed that this tightness depends on the
relative transmit-receive antenna configuration and the SNR.
For systems with equal or fewer transmit than receive antennas
(N ≤ M ), simulation results show that the Jensen mutual
information is a tight lower-bound to the channel capacity at
all SNRs. Any minor difference between IJ and the capacity
occurs only at mid-range SNRs, due to small difference in
power allocation. Otherwise, the Jensen covariance approaches
optimal at low and high SNRs. A similar observation is
reported for channels with rank-one transmit covariance and
uncorrelated receive antennas on both ergodic and outage ca-
pacities in [40]. Figure 6 shows a typical example with a 4×4
channel with the mean and transmit antenna correlation given
in Appendix C. The plot includes the channel capacity and
the Jensen mutual information (above), and the eigenvalues
of Q� and QJ (below). The mutual information with equal
power allocation is also included for comparison.

For systems with more transmit than receive antenna (N >
M ), the Jensen mutual information is a tight lower-bound to
the channel capacity at low SNRs. At high SNRs, however,

Fig. 8. Ergodic capacity versus the CSIT quality ρ at SNR = 4dB for 4× 4
channels (above) and 4 × 2 channels (below).

it exhibits a gap to the capacity. This gap depends on the
channel mean and the transmit antenna correlation. A higher
K or more correlated channel (measured by, for example, a
higher condition number of the correlation matrix) results in
a bigger gap. The main reason for the gap at high SNRs is
the difference in the power allocation. In contrast to the equi-
power of the Jensen covariance, the capacity-optimal input
can converge to non-equi-power at high SNRs. The optimal
convergence values are still unknown analytically ( Theorems
5 and 6 provide some partial results). Figure 7 provides an
example of the mutual information and input power allocations
for a 4 × 2 channel with the mean and correlation matrices
given in Appendix C.

These comparisons also reveal that the value of CSIT
depends on the antenna configuration and the SNRs. For
N ≤ M , CSIT helps increase the capacity only at low SNRs.
For N > M , however, CSIT helps increase the capacity at all
SNRs.

B. Capacity versus dynamic CSIT quality

Since the capacity lower bound IJ is tight at low SNRs,
it is used to plot the capacity versus CSIT quality ρ in
Figure 8. The capacity increases with higher ρ. The increment,
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Fig. 9. Ergodic capacity and mutual information versus the K factor with
SNR = -2dB (above) and SNR = 12dB (below).

however, is sensitive to ρ only when ρ is larger than about
0.6, corresponding to a relatively good channel estimate. This
observation implies that in dynamic CSIT, the initial channel
measurement adds value only when its correlation with the
current channel is relatively strong; otherwise statistical CSIT
provides most information.

Figure 8 examines two antenna configurations: 4×4 (above)
and 4 × 2 (below). In each configuration, an i.i.d channel
and a Rician correlated channel (with mean and covariance
matrices given in Appendix C) are studied. Results show that
the range of capacity gain for i.i.d channels is larger than
for the correlated ones. Note that as the SNR increases, the
capacity gain for the 4×4 channels decreases to 0, but for the
4 × 2 channels, it increases to up to 2 bps/Hz. For reference,
the capacity of the non i.i.d channel without any CSIT is also
included. In non i.i.d channels, knowing the channel statistics
alone (ρ = 0) can enhance the capacity. Furthermore, at low
SNRs, non i.i.d channels can have higher capacity than i.i.d
ones, as seen in the second sub-figure.

C. Effects of the K factor

The channel Rician K factor affects the ergodic capacity
differently depending on the SNR. Figure 9 shows the ca-

Fig. 10. K factor threshold for 4 × 2 channels for tight lower-bound to
the ergodic capacity using the Jensen mutual information (difference < 0.03
bps/Hz).

pacity versus K at two different SNRs for the 4 × 2 Rician
correlation channels. Notice that at a low SNR (-2dB), the
capacity is a non-monotonous function of the K factor, and
a minimum exists. This minimum is partly caused by the
transmit antenna correlation impact: at low K , the correlation
effect becomes more dominant, and because of the low SNR,
stronger correlation helps increase the capacity. At a higher
SNR (12 dB), the correlation impact diminishes for full-rank
correlation. Provided that the channel mean is also full-rank,
the capacity then monotonically increases with the K factor.
The increment, however, diminishes with higher K .

For systems with more transmit than receive antennas, a
higher K factor also causes the SNR point, at which the
Jensen mutual information starts diverging from the channel
capacity, to increase. This effect implies that with higher K
factor, the bound is tight for larger range of SNRs. Figure
10 presents this K factor threshold versus the SNR for the
4×2 channels (keeping the same transmit antenna correlation
but only varying its power with K). When K is above this
threshold, the Jensen mutual information is a tight lower bound
to the capacity. The difference then is less than 0.03 bps/Hz,
which is within the numerical precision for optimizing the
capacity.

VIII. CONCLUSION

In this paper, we propose a dynamic CSIT model and
study the corresponding channel capacity. Dynamic CSIT is
a model for transmit channel side information that takes into
account the channel temporal variation. The model consists of
a channel estimate and its error covariance, built on an initial,
accurate channel measurement and the channel mean, covari-
ance, and temporal correlation factor ρ. This factor functions
as the CSIT quality, with 1 corresponding to perfect, and 0 to
statistical information. Parameterized by ρ, the CSIT provides
an effective channel mean and an effective covariance. This
model can be applied to a general Rician correlated fading
MIMO channel.

Asymptotic capacity analyses show that, at low SNRs,
dynamic CSIT helps increase the capacity multiplicatively
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max
λ1

g(λ1) = Eh̃j

⎡
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⎞
⎠
⎤
⎥⎦
⎤
⎥⎦ , (40)

for all MIMO systems, and the optimal input is typically
simple single-mode beamforming. At high SNRs, the capacity
gain depends on the relative number of antennas. For systems
with equal or fewer transmit than receive antennas, the gain
diminishes to zero, since the optimal input approaches equi-
power with increasing SNRs. For systems with more transmit
than receive antennas, however, we show that the gain depends
on the CSIT. Specifically, systems with strong transmit antenna
correlation or strong mean can lead to an optimal input with
mode-dropping at high SNRs, producing an additive capacity
gain with the CSIT. For systems with rank-deficient transmit
correlation, knowing this correlation at the transmitter can also
additively increase the capacity at high SNRs.

A convex optimization program is then used to study the
capacity non-asymptotically. We compare the capacity to a
lower-bound based on the Jensen-optimal input. This simple
lower-bound is often tight at all SNRs for systems with equal
or fewer transmit than receive antennas. For systems with more
transmit than receive antennas, however, the bound is tight
at low SNRs but diverges at high SNRs. The divergence at
high SNRs is caused by the difference in power allocation
and depends on CSIT parameters – the channel mean and the
transmit antenna correlation. A stronger mean or correlation
causes a larger divergence. Furthermore, a higher channel K
factor results in a higher SNR, at which the divergence begins.

Applied to dynamic CSIT, optimization results illustrate
increasing capacity with better CSIT quality ρ. However, the
capacity gain is sensitive to ρ for large ρ only, at roughly ρ ≥
0.6. Otherwise, the gain equals that with ρ = 0, corresponding
to statistical CSIT. This observation suggests that, in dynamic
CSIT, the initial channel measurement is useful only when its
correlation with the current channel is relatively strong (ρ ≥
0.6); otherwise, using the channel statistics alone achieves
most of the gain. Furthermore, the capacity gain depends not
only on ρ but also on the channel statistics. Compared to
a correlated Rician channel, the gain is higher for an i.i.d
channel at high ρ, but becomes lower as ρ decreases.Thus
evaluating the capacity gain requires knowing both the CSIT
quality factor and the channel statistical parameters, the mean
and covariance.

APPENDIX

A. K-factor threshold for mode-dropping at all SNRs

This section provides the derivation for (32). In problem
(31), replacing λ2 as a function of λ1, noting that the optimal
λ1 ≥ λ2, the problem becomes equivalent to (39), where gj =(
βej + h̃j

)
. Since problem (31) is convex, this problem is

convex. Thus, to have the optimal λ�
1 = 1/M , it is sufficient

and necessary that dg(λ1)
dλ1

∣∣∣
λ1=1/M

≥ 0, which translates to

(40), where (a) follows from adding and subtracting MIM in
the second parenthetic factor inside the trace expression, and
h̃j and gj are independent. Due to this independence, and
noting that h̃j ∼ N (

0, (1 − β2)IM

)
, the above inequality

leads to (41). This expression results in (32).

B. Rt condition number threshold for mode-dropping at all
SNRs

This section provides the derivation for (37). In problem
(36), replacing λ1 as a function of λ2 and noting that
λ1 ≥ λ2, the problem becomes equivalent to (42), where
h̃i ∼ N (0, IM ). The condition for the optimal λ2 = 0 is
∂f
∂λ2

∣∣∣
λ2=0

≤ 0, which translates to (43), where (a) follows

from mutually exclusive, independent sums and that

E

⎡
⎣ N∑

j=L+1

h̃jh̃∗
j

⎤
⎦ = (N − L)IM .

Inequality (43) then leads to (37).

C. Parameters for capacity optimization

This section lists the CSIT parameters for capacity opti-
mization in Sections VII. All simulated channels have 4 trans-
mit and either 2 or 4 receive antennas. The normalized transmit
covariance matrix (such at tr(Ṙt) = MN ) is given in (44).
This matrix has the eigenvalues [2.717 , 0.997 , 0.237 , 0.049]
and a condition number of 55.5, representing strong antenna
correlation. The normalized mean (such at tr(ḢmḢ∗

m) =
NM ) for the 4 × 2 channel is given in (45). The normalized
mean for the 4×4 channel is given in (46). These parameters
are then scaled according to the channel K factor in the
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M ≥ tr

⎛
⎜⎝Eh̃j

⎡
⎢⎣
⎛
⎝IM +

γ

M

M∑
j=1

gjg∗
i

⎞
⎠

−1
⎤
⎥⎦Eh̃j

⎡
⎣IM +

γ

N − M

N∑
j=M+1

h̃jh̃∗
j

⎤
⎦
⎞
⎟⎠

= tr

⎛
⎜⎝Eh̃j

⎡
⎢⎣
⎛
⎝IM +

γ

M

M∑
j=1

gjg∗
i

⎞
⎠

−1
⎤
⎥⎦ [

1 + γ
(
1 − β2

)]⎞⎟⎠ . (41)

max
λ2

f(λ2) = Eh̃i

⎡
⎣log det

⎛
⎝IM + γ

1 − (N − L)λ2

L
ξ1

L∑
i=1

h̃ih̃∗
i + γλ2ξ2

N∑
j=L+1

h̃jh̃∗
j

⎞
⎠
⎤
⎦ (42)

subject to 0 ≤ λ2 ≤ 1
N

,

0 ≥ Eh̃i

⎡
⎢⎣tr

⎡
⎢⎣
⎛
⎝IM +

γξ1

L

L∑
j=1

h̃ih̃∗
i

⎞
⎠

−1 ⎛
⎝γξ2

N∑
j=L+1

h̃jh̃∗
j − γξ1

N − L

L

L∑
i=1

h̃ih̃∗
i

⎞
⎠
⎤
⎥⎦
⎤
⎥⎦

(a)
= tr

⎛
⎜⎝Eh̃i

⎡
⎢⎣
⎛
⎝IM +

γξ1

L

L∑
j=1

h̃ih̃∗
i

⎞
⎠

−1 ⎛
⎝γξ2IM − γξ1

L

L∑
j=1

h̃ih̃∗
i

⎞
⎠ (N − L)

⎤
⎥⎦
⎞
⎟⎠

= tr

⎛
⎜⎝Eh̃i

⎡
⎢⎣
⎛
⎝IM +

γξ1

L

L∑
j=1

h̃ih̃∗
i

⎞
⎠

−1 ⎡
⎣(γξ2 + 1)IM −

⎛
⎝IM +

γξ1

L

L∑
j=1

h̃ih̃∗
i

⎞
⎠
⎤
⎦
⎤
⎥⎦
⎞
⎟⎠ (N − L)

=

⎡
⎢⎣tr

⎛
⎜⎝Eh̃i

⎡
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⎛
⎝IM +

γξ1

L

L∑
j=1

h̃ih̃∗
i

⎞
⎠

−1

(γξ2 + 1)

⎤
⎥⎦
⎞
⎟⎠− M

⎤
⎥⎦ (N − L) , (43)

Ṙt =

⎡
⎢⎢⎣

0.8758 −0.0993− 0.0877i −0.6648− 0.0087i 0.5256− 0.4355i
−0.0993 + 0.0877i 0.9318 0.0926 + 0.3776i −0.5061− 0.3478i
−0.6648 + 0.0087i 0.0926− 0.3776i 1.0544 −0.6219 + 0.5966i

0.5256 + 0.4355i −0.5061 + 0.3478i −0.6219− 0.5966i 1.1379

⎤
⎥⎥⎦ . (44)

simulations. The simulated channels have K = 0.1, except
for the studies of the capacity versus the K factor.
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