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Abstract—We study a cognitive network consisting of multiple
cognitive users communicating in the presence of a single primary
user. The primary user is located at the center of the network, and
the cognitive users are uniformly distributed within a circle around
the primary user. Assuming a constant cognitive user density, the
radius of this circle will increase with the number of users. We
consider a scheme in which the primary transmitter sends a beacon
signaling its own transmission. The cognitive users, upon receiving
this beacon, stay silent. Because of channel fading, however, there is
a non-zero probability that a cognitive user misses the beacon and
hence, with a certain activity factor, transmits concurrently with
the primary user. Given the location of the primary receiver, we
are interested in the total interference caused by the cognitive users
to this receiver. In particular, we provide closed-form bounds on
the mean and variance of the interference, and relate them to the
outage probability on the primary user. These analytical results can
help in the design of a cognitive network with beacon.

I. INTRODUCTION

With the recent introduction of secondary spectrum usage [1],
wireless networks with heterogeneous users is becoming a reality.
Among the users, a primary user, often the primary license holder,
is the one who has the priority access to the spectrum. Others,
generally termed secondary users, usually access the spectrum in
a way to minimize the effect on the primary users’ performance.
These secondary users therefore often employ cognitive radios
[2] to carry out transmission.

Several modes of operation for the cognitive users exist [3].
They can transmit concurrently with the primary users. The
cognitive users then can either be subject to a spectral mask
to control the interference to the primary users (the underlay
method), or be intelligent enough to avoid interfering with or
to partially help the primary user by sophisticated coding [4]
(the overlay method). In another mode, the cognitive users can
opportunistically access the spectrum when they detect an unused
slot (the interweave method). This mode often requires the
cognitive users to sense the spectrum (see for example [5]) or
that the network has a built-in mechanism to detect spectrum
holes. A beacon system is a such mechanism.

In a network with beacon, the primary users transmit a beacon
before each transmission. This beacon is received by all users in
the network. The cognitive users, upon detecting this beacon, will
abstain from transmitting for the next duration. The mechanism
is designed to avoid interference from the cognitive users to the
primary users. In practice, however, because of channel fading,
the cognitive users may sometimes miss-detect the beacon. They
can then transmit concurrently with the primary users, creating
interference. Therefore, it is of interest how this interference
level relates to design parameters, such as the beacon detection
threshold, and how it affects the primary users’ performance.

In this paper, we analyze this interference and its effect on
performance mathematically. We model a network with a single
primary user, surrounded by multiple, random cognitive users
with constant density. The interference power can be derived as

a function of the beacon detection threshold and the cognitive
user density and transmit power. Subject to random fading and
random cognitive user locations, this interference is random. We
provide closed-form upper bounds on the mean and variance
of this interference power. Taking into account the distance
between the primary transmitter and receiver, together with the
primary transmit power, we then link the mean and variance of
the interference to the outage probability on the primary user,
therefore quantifying the effect of these cognitive users.

The paper is organized as follows. In Section II, we introduce
the detailed network model, the channel model and analyze the
signaling system with beacon. We the formulate the interference
from the cognitive users to the primary user in Section III. In
Section IV, we derived closed-form upper bounds on the mean
and variance of this interference. Section V links these mean
and variance to the primary outage probability. We conclude in
Section VI.

II. NETWORK AND SYSTEM MODELS

A. Network model

We consider a planar network with a single primary user and n
cognitive users. The primary user is at the center of the network
with the transmitter Tx0 and the receiver Rx0 at a distance R0

away. Surrounding the primary user are n cognitive users, each
has a single transmitter communicating with a single and unique
receiver. In examining the interference from these cognitive users
to the primary user, we choose to center the network at the
primary receiver Rx0. The cognitive transmitters Txi and receivers
Rxi (i = 1 . . . n) are then uniformly distributed in a circle
centered at Rx0 of radius R. The average cognitive user density
is constant at λ users per unit area. Thus the network area, in
particular the radius R, grows with n.

To limit the interference from each cognitive transmitter, we
also assume that the cognitive transmitters must be at least a
distance ε from the primary receiver, for some ε > 0. This
practical constraint basically disallows the interfering transmitter
to be at the same point as the interfered receiver. Implicitly, we
assume that the cognitive users can detect the location of the
primary receiver using some sensing mechanism, therefore they
can abide by this rule. Figure 1 illustrates this network model.

B. Channel model

We study a wireless channel with path loss and fading. Given a
distance d between the transmitter and the receiver, the composite
channel h can be written as

h =
A

dα/2
h̃ (1)

where A is a frequency-dependent constant, α is the power path
loss, and h̃ is the small-scale fading factor. Assuming no line-of-
sight, h̃ is a complex circular Gaussian random variable with zero
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Fig. 1. Network model: The primary receiver is located at the center of the circle,
the primary transmitter at a distance R0, and the cognitive users are uniformly
distributed in between the circles of radii R and ε. Also shown is an example of
a cognitive transmitter at radius r and angle θ.

mean and unit variance. For simple notation, we assume A = 1
(which is equivalent to normalizing the noise power according to
A).

We denote the channel from primary Tx0 to primary Rx0 as
h0, from primary Tx0 to cognitive Rxi as gi, and from cognitive
Txi to primary Rx0 as hi. Hereafter, we use the same channel
notation with a tilde to denote the small-scale fading component
in each channel.

C. Signal model

Each cognitive user has an active factor of β, which is
the probability that the user is actively transmitting. To avoid
interference to the primary receiver, the cognitive users listen
to a beacon, which the primary transmitter sends before its own
transmission. Upon receiving this beacon, the cognitive users will
remain silent for the duration of the primary transmission.

Denote xb as the beacon transmit signal and yi,b as the received
signal at Rxi (for i = 1, . . . , n). Then yi,b can be written as

yi,b = gixb + zi . i = 1, . . . , n (2)

where zi is independent additive white Gaussian noise with power
σ2. With the beacon transmit power Pb, then the received power
at the cognitive receiver i is

P i
r,b =

Pb|gi|2

σ2
. (3)

We assume that a cognitive user can correctly decode the beacon
if its receive power is above a threshold Pth. Therefore the
probability that the cognitive receiver misses the beacon is

qi = Pr
[

P i
r,b < Pth

]

= Pr
[

|gi|
2 <

Pthσ2

Pb

]

.

Now denote
γ =

Pthσ2

Pb
, (4)

then
qi = Pr

[

|gi|
2 < γ

]

. (5)

Note that γ is unitless since the noise power has been normalized
by the path loss constant A.

When a cognitive user misses the beacon, that user can transmit
concurrently with the primary user with a probability that is its
activity factor. Here we assume that all cognitive users have the
same activity factor β and transmit with the same power P . Let xi

the the transmit signal of cognitive user i, and x0 be the primary
transmit signal, then the received signal at the primary receiver
can be written as

y0 = h0x0 +

n
∑

i=1

Fihixi + z0 (6)

where
• Fi is an indicator function for cognitive user i transmitting;

in other words, Fi is a random variable with the following
density:

Fi =

{

1 with probability βqi

0 with probability 1 − βqi
(7)

and the Fi are independent.
• z0 ∼ N (0, σ2) is the additive white Gaussian noise.
We assume that the cognitive users do not cooperate, hence

xi are independent, zero-mean signals with power P . The total
interference power from the cognitive users therefore is

I0 =

n
∑

i=1

Fi|hi|
2P. (8)

Because of the random cognitive user location and the small-
scaled channel fading, this interference power is a random
variable.

With a large number of independent cognitive users, the
interference will appear as Gaussian. Thus the capacity-optimal
primary transmit signal x0 is zero-mean Gaussian. With transmit
power P0, the rate achieved by the primary user is

C0 = log

(

1 +
|h0|

2P0

I0 + σ2

)

. (9)

Since the interference power I0 is random, this capacity is also
random. An outage probability for a given rate threshold T can
then be defined as

pe = Pr[C0 ≤ T ]. (10)

Next we examine the interference power I0 and its effect on
the primary outage probability. In particular, we will study the
mean and variance of I0 in the limit as the number of cognitive
users n → ∞.

III. INTERFERENCE FROM THE COGNITIVE USERS

In this section, we compute the interference from all cognitive
transmitters to the primary receiver. From our network model,
the primary receiver is located at the center of the network, with
the primary transmitter at a distance R0 away. The cognitive
transmitters are uniformly distributed with constant density λ
between two circles of radii ε and R. As the number of cognitive
users grows, R approaches ∞.

We will first establish the interference to the receiver from a
cognitive transmitter at a radius r (ε ≤ r ≤ R) and at an angle
θ to the line connecting the primary transmitter and receiver, as
in Figure 1. For uniformly distributed cognitive users, r has the
density

fr(r) =
2r

R2 − ε2
, ε ≤ r ≤ R. (11)



The distribution of θ is uniform between 0 and 2π.
Now consider the probability that this cognitive user misses the

beacon, qi. From (1), the channel between the primary transmitter
and this cognitive user is

gi =
g̃i

d(r, θ)α/2
(12)

where
d(r, θ) = (r2 + R2

0 − 2rR0 cos θ)1/2. (13)

Given this cognitive user location, then the probability of missing
the beacon (5) becomes

qi = Pr
[

|gi|
2 < γ

]

= Pr
[

|g̃i|
2 < γdα(r, θ)

]

. (14)

With g̃i being zero-mean circularly complex Gaussian, 2|g̃i|2 is
a chi-square random variable with 2 degrees of freedom with the
pdf e−z , hence Pr

[

|g̃i|
2 ≤ y0

]

= 1 − e−y0 . The missing beacon
probability thus can be explicitly calculated as

qi = 1 − e−γdα(r,θ). (15)

When missing the beacon, the cognitive transmitter may transmit
with probability β. The channel from this cognitive transmitter
to the primary receiver is

hi = r−α|h̃i|
2. (16)

Since the cognitive transmitters are independent, from (8), (15),
and (16), the total interference power from cognitive users can
be written as

I0 = Pβ

n
∑

i=1

qir
α
i |h̃i|

2 (17)

where

n = λπ(R2 − ε2)

qi = 1 − e−γdα(ri,θi)

d(ri, θi) = (r2
i + R2

0 − 2riR0 cos θi)
1/2

ri ∼ fri
(r) =

2r

R2 − ε2
, ε ≤ ri ≤ R , i.i.d.

θi ∼ U [0, 2π] i.i.d.
h̃i ∼ N (0, 1) i.i.d.

and α, β, γ, λ,R are constants.
Denote

Ii = qir
α
i |h̃i|

2 (18)

then Ii are i.i.d. and

I0 = Pβ

n
∑

i=1

Ii . (19)

A. An upper bound on the interference

Here, we apply some simple bounds to the interference that
allow closed-form expressions. For simplicity, we will drop the
subscript i of each cognitive user and denote

d = (r2 + R2
0 − 2rR0 cos θ)1/2

I =
(

1 − e−γdα
)

r−α|h̃|2.

We can bound the beacon missing probability by changing the
distance from the cognitive user to the primary transmitter for the
beacon reception. An upper bound corresponds to increasing this

distance, as if the cognitive user is located on the circle centered
at the primary transmitter with radius r +R0. The cognitive user
then will be more likely to miss the beacon and therefore increase
its interference to the primary user. This the interference can then
be bounded as

I ≤
(

1 − e−γ(r+R0)
α
)

r−α|h̃|2 (20)

Next, we will use this bound to study the mean and variance of
the interference.

IV. MEAN AND VARIANCE OF THE INTERFERENCE POWER

In this section, we study the mean and variance of the inter-
ference power. In particular, we will provide closed-form upper
bounds on them. Since the interference power is a sum of i.i.d.
random variables (19), and noting that n = λπ(R2 − ε2), the
mean and variance of the interference power can be written as

E[I0] = Pβλπ(R2 − ε2)E[I] (21)
var(I0) = P 2β2λπ(R2 − ε2)

(

E[I2] − E[I]2
)

(22)

Therefore, it is of interest to compute E[I] and E[I2].
Since h̃ is a zero-mean circular complex Gaussian random

variable, we have E[|h̃|2] = 1 and E[|h̃|4] = 3. Noting the
density of r in (11) and that θ is uniform, based on (20), we
can bound E[I] and E[I2] as

E[I] ≤ 2

∫ R

ε

(

1 − e−γ(r+R0)
α
) r1−α

R2 − ε2
dr (23)

E[I2] ≤ 6

∫ R

ε

(

1 − e−γ(r+R0)
α
)2 r1−2α

R2 − ε2
dr (24)

Next, we will evaluate these bounds on the mean and variance
of the interference power.

A. Upper bound on the mean interference power

Consider the upper bound in (23). Noting that 1 − α < 0, we
have r1−α ≥ (r + R0)

1−α; hence

E[I] ≤

∫ R

ε

2
(

r1−α − e−γ(r+R0)
α

(r + R0)
1−α

)

R2 − ε2
dr.

To interpret this bound, note that the interference from a cognitive
user can be seen as the interference when that user always
transmits minus the portion during the time this user receives the
beacon. The above bound corresponds to slightly reducing the
latter portion by increasing the distance to the primary Tx from
the cognitive user when that user receives the beacon. Hence
the interference from this user when missing the beacon will be
slightly increased.

This bound can be evaluated in closed forms using the incom-
plete Gamma function, as shown in the Appendix. Specifically,
we have an explicit upper bound for the average interference
power E[I0] in (25). With an infinite number of cognitive users,
R → ∞, this bound approaches a limit as in (26).

Figure 2 shows a plot of this upper bound on E[I0] versus the
beacon threshold level γ for α = 2.1, R0 = 5, ε = 0.2 (assuming
a large R , R = 100000, and all other parameters normalized to
unit values). We see that as the beacon threshold increases, the
cognitive users are more likely to miss the beacon and therefore
increase the average interference to the primary user. The case
when the cognitive transmitters are always transmitting (a beacon-
less system) corresponds to γ = ∞. This limit, however, is



E[I0] ≤
2πλβP

α − 2

[(

1

εα−2
−

1

Rα−2
− e−γ(ε+R0)

α

(ε + R0)
2−α + e−γ(R+R0)

α

(R + R0)
2−α

)

+ γ(α−2)/α

(

Γ

(

2

α
, γ(ε + R0)

α

)

− Γ

(

2

α
, γ(R + R0)

α

))]

(25)

E[I0] ≤
2πλβP

α − 2

[

1

εα−2
− e−γ(ε+R0)

α

(ε + R0)
2−α + γ(α−2)/αΓ

(

2

α
, γ(ε + R0)

α

)]

(26)
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Fig. 2. An upper bound on the average interference versus the beacon threshold
level.

approached quickly for finite values of γ. The convergence rate
depends on other parameters such as α,R0, ε and P .

Figure 3 shows the plots of this bound versus the primary
Tx-Rx distance R0 (for α = 2.1 and γ = 0.2). The bound is
monotonously increasing in R0. As R0 increases, however, the
interference upper bound approaches a fixed limit. Since most of
the interference comes from the cognitive transmitter close to the
primary receiver, when this receiver is far away from the primary
transmitter (R0 is large), then these cognitive users are likely to
always miss the beacon and hence create a constant interference
level to the primary user.
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Fig. 3. The upper bound on the average interference versus the primary Tx-Rx
distance.

Similarly, Figure 4 shows the plots of the bound versus the
receiver guard radius ε. As ε increases the interference power
monotonically decreases to zero, since the number of interfer-
ing transmitters around the primary receiver will asymptotically

reduce to zero.
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Fig. 4. The upper bound on the average interference versus the guard radius ε.

B. Upper bound on the variance of interference

Similarly, noting that (r + R0)
α ≥ rα + Rα

0 , the upper bound
on E[I2] in (24) can be further bounded as in (27), where the
function F is given in the Appendix. Using the gamma functions
as shown in the Appendix, this bound can be evaluated in closed-
form.

From (22), (23) and (24), we deduce that as R → ∞, var(I0)
depends only on E[I2] but not E[I]. Thus when R → ∞, we
have an upper bound on the variance of the interference to the
primary user as in (28), where the function G is defined in (29).

Figure 5 shows a plot of this upper bound on var[I0] versus the
beacon threshold level γ for α = 2.1, R0 = 5, ε = 0.2, and all
other parameters normalized to unit values. Compared to Figure
2, the beacon threshold has the opposite effect on the variance as
it has on the mean: the variance is decreased at larger threshold
levels. Thus increasing the beacon threshold also increase the
interference but make it less variable. Conversely, by making the
cognitive receiver more sensitive to the beacon, the interference
is reduced on the average but is more variable.

Figure 6 shows the plots of this bound versus R0 (for α = 2.1
and γ = 0.2). As a function of R0, the variance has a unique
maximum value, achieved at a “critical” (though small) R0. When
R0 is above a certain threshold, the variance stays constant.

Similarly, Figure 6 shows the plots of this bound versus ε.
The bound is monotonously decreasing in ε, and it approaches
0 quickly as ε increases. This implies that as ε increases, the
interference from the cognitive users approaches a constant.

V. OUTAGE PROBABILITY

In this section, we relate the probability of outage on the
primary user to the cognitive users’ activities, in particular, to the



E[I2] ≤
6

R2 − ε2

∫ R

ε

(

r1−2α − 2e−γ(r+R0)
α

(r + R0)
1−2α + e−2γRα

0 e−2γrα

r1−2α
)

dr (27)

=
6

R2 − ε2

[

ε−2(α−1) − R−2(α−1)

2(α − 1)
− 2F (α, 1 − 2α, γ, ε + R0, R + R0) + e−2γRα

0 F (α, 1 − 2α, 2γ, ε, R)

]

.

var(I0) ≤ 6P 2β2λπ

(

1

2(α − 1)

1

ε2(α−1)
− G(α, γ, ε + R0) +

1

2
e−2γRα

0 G(α, 2γ, ε)

)

(28)

G(α, γ, x) =
1

(α − 1)
e−γxα

x−2(α−1) −
αγ

(α − 1)(α − 2)
e−γxα

x2−α +
αγ2−2/α

(α − 1)(α − 2)
Γ

(

2

α
, γxα

)

. (29)
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Fig. 5. An upper bound on the variance of the interference versus the beacon
threshold level.
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Fig. 6. The upper bound on the variance of the interference versus the primary
Tx-Rx distance.

mean and variance of the interference power I0. With the primary
user rate (9), given a target rate T , the outage probability can be
written as

pe = Pr [C0 < T ] = Pr
[

I0 + σ2 >
|h̃0|2

Rα
0

P0

(2T − 1)Rα
0

]

.

Denote the following expression as the “normalized” (without the
channel) primary received power per bit at the target rate:

Pr =
P0

(2T − 1) Rα
0

(30)

10
−1

10
0

10
1

10
2

0

200

400

600

800

1000

1200

1400

Receiver guard radius ε

U
pp

er
 b

ou
nd

 o
n 

E
[I 0]

Fig. 7. The upper bound on the variance of the interference versus the receiver
guard radius ε.

and denote the noise-to-signal ratio (the inverse of SNR) per bit
at the target rate as

ξ =
σ2

Pr
, (31)

then the outage probability becomes

pe = Pr
[

I0 > Pr

(

|h̃0|
2 − ξ

)]

. (32)

The outage can be separated into two parts: outage due to noise
alone, pn, and outage due to interference, pi

pe = pn + pi (33)

where

pn = Pr
[

|h̃0|
2 ≤ ξ

]

= 1 − e−ξ (34)

pi = Pr
[

I0 > Pr

(

|h̃0|
2 − ξ

)

, |h̃0|
2 > ξ

]

= e−ξ Pr
[

I0 > Pr

(

|h̃0|
2 − ξ

)
∣

∣

∣
|h̃0|

2 > ξ
]

. (35)

Lets investigate the outage due to interference, pi. Denote

t = Pr

(

|h̃0|
2 − ξ

)

= Pr|h̃0|
2 − σ2 , (36)

then
pi = e−ξ Pr [I0 > t| t > 0] . (37)

In this expression, both I0 and t are random variables. From
(19), since the interferences from different cognitive users are
independent, based on the LLN, as n → ∞, I0 approaches a



Gaussian random variable with mean E[I0] and variance var(I0).
On the other hand, since |h̃0|

2 is an exponential random variable
with parameter 1

2 , the pdf of t is given as

ft(t) =
1

2Pr
exp

(

−
t + σ2

2Pr

)

, t ≥ −σ2.

We will now bound the probability Pr[I0 > t] for a given t,
then compute pi in (37) using the distribution of t. For a given
t, using the Chernoff bound on a Gaussian random variable, we
have

Pr[I0 > t] ≤ exp

(

−
(t − E[I0])

2

2var(I0)

)

Now taking in the distribution of t, the conditional probability in
pi can be upper bounded as in (38).

Pr[I0 > t|t > 0]

≤

∫

∞

0

exp

(

−
(t − E[I0])

2

2var(I0)

)

1

2Pr
exp

(

−
t + σ2

2Pr

)

dt

=
1

2Pr
exp

(

−
σ2

2Pr
−

E[I0]

2Pr
+

var(I0)

8P 2
r

)

×

∫

∞

−E[I0]+
var(I0)
2Pr

exp

(

−
x2

2var(I0)

)

dx. (38)

We can further bound this probability as follows. Noting that
the lower limit of the integral in (38) depends on the received
power Pr and the mean and variance of the interference I0, we
consider two cases. When the received power Pr (30) is large
enough such that

Pr ≥
var(I0)

2E[I0]
, (39)

then the lower integral limit is non-positive. Using the whole
Gaussian density integral, we can upper bound (38) as

Pr[I0 > t|t > 0]]

≤

√

2πvar(I0)

2Pr
exp

(

−
σ2

2Pr
−

E[I0]

2Pr
+

var(I0)

8P 2
r

)

. (40)

In the case that (39) does not hold, denote w as the lower limit
of the integral in (38), then w ≥ 0. For the integral range, since
x ≥ w ≥ 0, replacing x2 by xw, we obtain another bound for
(38) as

Pr[I0 > t|t > 0]

≤
2var(I0)

var(I0) − 2PrE[I0]
exp

(

−
σ2

2Pr
−

E[I0]
2

2var(I0)

)

. (41)

Then combining (33) with (34), (37) and (40) or (41), we obtain
an explicit bound on the outage probability that is a function of
the mean and variance of the interference power I0 and other
parameters.

VI. CONCLUSION

In this paper, we studied a network consisting of a primary user
and multiple cognitive users. The primary user sends a beacon
prior to each transmission to silence the cognitive users and claim
the spectrum. But because of channel fading, there is a nonzero
chance that a cognitive user misses this beacon and transmits
concurrently with the primary user, hence creating interference.
We formulate this interference power as a function of the beacon
threshold, the number of cognitive users. the primary and cogni-
tive transmit powers, the distance between the primary transmitter

and receiver, and the receiver protected radius. We then provide
closed-form upper bounds on the mean and the variance of this
interference power, both with a finite number of cognitive users
and in the limit as this number goes to infinity. These bounds
offer an analytical understanding of how the interference behaves
according to various network parameters. We also relate the mean
and variance of the cognitive interference power to the outage
probability of the primary user. These analytical results can help
a network designer in setting the network parameters to meet
a required performance goal. The beacon model in this paper
can also be generalized to a broader side information model in
cognitive networks. Interference analysis in such networks will
be important in understanding the interaction among the users
and in designing their algorithms.
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APPENDIX

GAMMA FUNCTION EVALUATIONS

We denote the following function which is used in the bounds
on the mean and variance of the interference power:

F (α, β, γ, u, v) =

∫ v

u

e−γzα

zβdz.

To evaluate this function, let w = zα, dw = αzα−1dw =
αw(α−1)/αdz, then

F (α, β, γ, u, v)

=

∫ vα

uα

e−γwwβ/α dw

αw(α−1)/α

=

∫ γvα

γuα

e−x(x/γ)β/α dx

αγ(x/γ)(α−1)/α
, (x = γw)

=
γ−(β+1)/α

α

∫ γvα

γuα

e−xx(β+1)/α−1dx.

If β + 1 ≥ 0, then

F (α, β, γ, u, v) (42)

=
γ−(β+1)/α

α

[

Γ

(

β + 1

α
, γuα

)

− Γ

(

β + 1

α
, γvα

)]

.

where Γ(·, ·) is the incomplete Gamma function. If β + 1 < 0,
then

F (α, β, γ, u, v) (43)

=
1

β + 1

(

e−γvα

vβ+1 − e−γuα

uβ+1
)

+
αγ

β + 1
F (α, β + α, γ, u, v) .


