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Abstract—We study a cooperative communication system con-
sisting of two users in half duplex mode communicating with
one destination over additive white Gaussian noise (AWGN).
Cooperation is performed between the two users by partial
decode-forward relaying over 3 time slots with variable duration.
During the first two slots, each user alternatively transmits and
decodes while during the last time slot, both users cooperate to
partially forward information to the destination. We establish the
achievable rate region of this scheme. Then using the Lagrangian
method, we analyze the optimal power allocations and the optimal
time duration that maximize its throughput for the symmetric
channel. Results show a significant improvement of the rates
compared to the classical multiple access channel (MAC) when
the inter-user channel quality is better than that between each
user and the destination.

I. INTRODUCTION

Cooperative communications have received substantial re-
search during the last few years as cooperation provides an
efficient way to increase throughput and reliability of com-
munication systems. These characteristics allow cooperative
communications to meet the high throughput requirements of
image and video services offered by communication networks.
Cooperative communication is possible in both wired and
wireless networks.

One example of cooperative communication is multiple
access with generalized feedback [1]. In [2], this scheme is
applied to a cellular networks operating over fading channels
which shows that the cooperation leads to higher achievable
rate region and better outage probability. Another example
is the relay channel introduced in [3]. The capacity region
for the degraded relay channel is derived in [4] along with
several schemes for the general case such as decode-forward
and compress-forward. These schemes however assume full
duplex operation. Only recently, attention has been paid to
the more practice half duplex constraint. References [5], [6]
studied performance of half duplex cooperative systems in
terms of the outage and the error probability, respectively.
Outer capacity bounds for half duplex cooperative relay and
interference channels have also been analyzed in [7], [8], [9].

Furthermore, for the Gaussian and fading channels, power
allocation is an important problem encountered by the practical
designers. In [10], the optimal power allocation that mini-
mizes the outage probability for multi-hop transmission over
Rayleigh channels has been studied. The authors in [11] used
the relationship between the mutual information of Gaussian
channels and nonlinear minimum mean-square error (MMSE)

to find the optimal power allocation that maximizes the mutual
information of independent parallel Gaussian channels with ar-
bitrary input distributions. The optimal power allocations that
maximize the ergodic capacity for fading broadcast channels
and minimize the outage capacity for the fading MAC have
been studied in [12], [13], respectively.

In this paper, we propose a new half-duplex cooperative
scheme between two users communicating with one desti-
nation. Each user has its own information to send to the
destination. The transmission is carried out in independent
blocks where each block is divided into 3 time slots. During
the first time slot, the first user transmits its information to the
second user and the destination. The second user decodes this
information. Similarly, during the second time slot, the second
user transmits and the first user decodes. Finally, both users
cooperatively transmit to the destination during the third time
slot. We establish the achievable rate region for this scheme
by using rate splitting and superposition techniques [14] for
encoding and joint maximum likelihood (ML) decoding [15]
at the destination at the end of each block. We then analyze
the optimal power allocation and time duration that maximize
the sum rate using the Lagrangian method [16]. In this paper,
we restrict our optimization to symmetric AWGN channels
for simplicity, but the analysis can be extended to asymmetric
and fading channels when the channel coefficients are known
at the transmitter. The optimal power and time duration
values allow the system designers to optimally implement this
communication system in practice.

The remainder of this paper is organized as follows. Section
II presents the channel model. Section III describes the coop-
erative scheme and provides the analysis of the achievable
rate region. Section IV provides the analysis of the optimal
power allocations for the sum rate. Section V, presents some
numerical results and Section VI concludes the paper.

II. CHANNEL MODEL

Figure 1 illustrates the channels model for our cooperative
communication scheme. It consists of two users working in
half duplex mode and one destination. Each link between these
terminals is affected by a channel gain and AWGN. These two
users have messages (w1, w2) to be sent to the destination and
they wish to cooperate in order to increase their throughput.
In this paper, we will consider the throughput as the sum
rate from the two users to the destination. The discrete-time



Fig. 1. The channel model for cooperative communication.

mathematical formulation of this model can be expressed as

Y12 = K12X1 + Z1

Y21 = K21X2 + Z2

Y3 = K10X1 +K20X2 + Z3 (1)

where X1 and X2 are the transmitted signals from the first and
the second user, respectively. Y3, Y12, and Y21 are the signals
received by the destination, the second user, and the first user,
respectively. K12, and K21 are the inter-terminal channels co-
efficients. K10, and K20 are the channels coefficients between
each terminal and the destination. Z1 ∼ N(0, N1), Z2 ∼
N(0, N2), and Z3 ∼ N(0, N0). Here the channel gain Kij

are assumed to be real value, but the analysis can be applied
to complex-value channels as long as the channel phase is
known and can be compensated for at either the receiver or
the transmitter.

The half-duplex constraint is satisfied by the requirement
that no two channels in (1) occur at the same time. Although
TDMA satisfies this constraint, it leads to a rate region smaller
than that of MAC even with power control [14] because of no
cooperation. In this paper, we aim to cooperation to achieve a
larger rate region than the classical MAC and also satisfy the
half-duplex constraint.

III. COOPERATIVE SCHEME AND RATE REGION

A. Cooperative Scheme

To satisfy the half duplex constraint, the transmission is
done in independent blocks of fixed length (consisting of n
symbols), and each block is divided into three time slots. The
lengths of the 1st, 2nd, and the 3rd time slots are α1, α2 and
(1−α1−α2), respectively. Let w1 be the message of the first
user to be sent during a specific block. The first user divides its
message into three parts (w10, w12, w13). Similarly, the second
user divides its message w2 into (w20, w21, w23). During the
1st time slot, the first user sends (w10, w12) and the second
user decodes both parts. Similarly, during the 2nd time slot,
the second user sends (w20, w21) and the first user decodes
them. Finally, during the 3rd time slot, the first user sends
(w13, w12, w21) and the second user sends (w23, w21, w12)
while the destination utilizes what it receives during all three
time slots to decode (w1, w2) by joint ML decoding [15].

The encoding and decoding of our scheme can be explained
with help from Table I. In this coding scheme, half-duplex
applies because the user either transmits or receives during any

time slot. Furthermore, partial decode-forward [17] (Lecture
17) applies since each user decodes what it receives from the
other user in one of the first 2 time slots and then partially
forwards the decoded information along with new information
during the 3rd time slot.

The first user constructs its transmitted signals during the
1st and the 3rd time slots (X10, X13) as follows.

X10 =
√

P10X̌10(w10) +
√
PUU(w12)

X13 =
√

P13X̌13(w13) +
√
c2PUU(w12) +

√
c3PV V (w21)

Similarly, the second user constructs its transmitted signals
during the 2nd and the 3rd time slots (X20, X23) as

X20 =
√
P20X̌20(w20) +

√
PV V (w21)

X23 =
√
P13X̌23(w23) +

√
d2PV V (w21) +

√
d3PUU(w12)

where X̌10, X̌20, X̌13, X̌23, U, and V are independent and
identically distributed according to N(0, 1).

The power constraints for the two transmitters are

α1(P10 + PU ) + (1− α1 − α2)(P13 + c2PU + c3PV ) = P1

α2(P20 + PV ) + (1− α1 − α2)(P23 + d3PU + d2PV ) = P2

where (c2, c3, d2, d3) are constants specifying the amount of
power, relative to PU and PV , used to transmit the cooperative
information (w12, w21) during the 3rd time slot. These power
constraints ensure that the total energy each user spends in
each block is constant.

From Figure 1 and Table I, the specific signaling for our
scheme over the AWGN channel can be expressed as

Y12 = K12X10 + Z1

Y21 = K21X20 + Z2

Y1 = K10X10 + Z31

Y2 = K20X20 + Z32

Y3 = K10X13 +K20X23 + Z33

where Y12 is the signal received by the second user during
the 1st time slot, and Y21 is the signal received by the first
user during the 2nd time slot. Y1, Y2, and Y3 are the signals
received by the destination during the 1st, 2nd, and the 3rd time
slots, respectively. Z3i ∼ N(0, N0), i = 1, 2, 3.

B. Achievable Rate Region

Using the above encoding and decoding scheme, we can
establish the achievable rate region of this scheme. Because
of limited space, we omit the proof here, However, the proof
for the general discrete-memoryless channel is available in
[18]. The achievable rate region can be expressed as

R1 ≤ I2 + I5 , J1

R2 ≤ I4 + I6 , J2

R1 +R2 ≤ I7 + I2 + I4 , S1

R1 +R2 ≤ I2 + I9 , S2

R1 +R2 ≤ I4 + I8 , S3

R1 +R2 ≤ I10 , S4 (2)



1st slot with length α1n 2nd slot with length α2n 3rd slot with length (1− α1 − α2)n
First user Tx xα1n

10 (w10, w12) −− xn
13,(α1+α2)n+1(w13, w12, w̃21)

Second user Tx −− xα2n
20 (w20, w12) xn

23,(α1+α2)n+1(w23, w̃12, w21)

Y21 −− (w̃20, w̃21) −−
Y12 (w̃10, w̃12) −− −−

Y
Y1 Y2 Y3

(ŵ12, ŵ21, ŵ10, ŵ20, ŵ13, ŵ23)

Table I: The encoding and decoding schemes for half duplex cooperative scheme.

where

I2 = α1C

(
K2

12 (PU + P10)

N1

)
I4 = α2C

(
K2

21 (PV + P20)

N2

)
I5 = (1− α1 − α2)C

(
K2

10P13

N0

)
I6 = (1− α1 − α2)C

(
K2

20P23

N0

)
I7 = (1− α1 − α2)C

(
K2

10P13 +K2
20P23

N0

)
and I8, I9, and I10 are given in (3).

IV. OPTIMUM POWER ALLOCATION AND TIME DURATION

In this section, we focus on solving for the optimal values
of (α1, α2, P10, PU , c2, c3, P20, PV , d2, d3) that give the maxi-
mum sum rate. To simplify the analysis in order to get closed-
form expressions and insights to this optimization, we will
consider a symmetric case P1 = P2 = P, N0 = N12 = N21 =
N, K10 = K20, and K12 = K21. The optimization, however,
can be generalized to the asymmetric case. Because of our
symmetric assumption, it can be easily noted that to maximize
the sum rate, the power allocations and time durations for
both users will be the same and hence α1 = α2 = α,
P10 = P20, P13 = P23, PU = PV , c2 = d2, and c3 = d3.
As a consequence, S2 and S3 are equal. We start with special
cases when α = 0, or 0.5. Then we move to the case when
0 < α < 0.5, for which case the optimal values depend on
whether K12 > K10 or K12 < K10.

From the coding of our scheme, it can be easily seen that
when α = 0 our scheme becomes the classical MAC with
the same individual and sum rates. On the other hand, when
α = 0.5, our scheme goes to the classical TDMA with power
control scheme given in [14].

For 0 < α < 0.5: We will use the Lagrangian method
to find the optimal power allocations and time durations that
maximize the sum rate. Therefore, to maximize the sum rate,
we need to solve the following problem:

maxmin (S1, S2, S4) (4)
s.t. P = α(P10 + PU ) + (1− 2α) (P10 + PU (c2 + c3))

Again we consider two cases depending on the relative value
of K12 compared to K10.

A. For K12 < K10

In this case, it can be shown that S1 is the minimum among
(S1, S2, S4) as follows. Since S1 and S2 have I2 as a common
part, we just need to show that I9 > I4+I7 which, after some
mathematical manipulations, can be expressed as

log

(
1 +

(
K10

√
d3PV +K20

√
d2PV

)2
N +K2

10P13 +K2
20P23

)1−2α

>

log
(
1 +

(K2
21 −K2

20)(P20 + PV )

N +K2
20(P20 + PV )

)α

(5)

If K20 > K21, then (5) is correct because the right-hand-side
expression is negative while the left-hand-side one is positive.
Similarly, it can be shown that S1 < S4. Hence, we just need
to maximize S1 and by using the Lagrangian method, we get
the following optimal values: α = 0 and P13 = P , which lead
to the following throughput:

S⋆
1 = 0.5log

(
1 +

2K2
10

N
P

)
(6)

We can see that this sum rate is the same as that of the classical
MAC.

B. For K12 > K10

In this case, it is not obvious which expression among
(S1, S2, S4) is the minimum. However, for the maxmin prob-
lem in (4), the optimal power and time allocation will be
either the optimal for one of these expressions alone, or
at the intersection of two expressions. Thus, we first fix α
and find the optimal power allocations for each expression
subject to the power constraint. We also find the optimal power
allocations for each expression subject to the power constraint
and that it is equal to one other expression. Then, we will vary
α to find the optimal value which maximizes the sum rate.

1) Maximizing each expression in (S1, S2, S4) s.t. the
power constraint:

Maximizing S1: To maximize S1 s.t. power constraint,
using the Lagrangian method, we can show that the optimal
power allocations at a fixed α are

P ⋆
10 + P ⋆

U = 2P + (1− 2α)

(
N

K2
10

− N

K2
12

)
P ⋆
13 = P − α

(
N

K2
10

− N

K2
12

)
By substituting these optimum values in S1, we get

S⋆
1 (α) = αlog

(
K2

12

K2
10

)
+

1

2
log
(
1 +

2K2
10

N
P − 2α

(
1− K2

10

K2
12

))



I8 = α1C

(
K2

10(P10 + PU )

N0

)
+ (1− α1 − α2)C

(
K2

10(P13 + c2PU ) +K2
20(P23 + d3PU ) + 2K10K20

√
(c2PU )(d3PU )

N0

)

I9 = α2C

(
K2

20(P20 + PV )

N0

)
+ (1− α1 − α2)C

(
K2

10(P13 + c3PV ) +K2
20(P23 + d2PV ) + 2K10K20

√
(d2PV )(c3PV )

N0

)

I10 = α1C

(
K2

10(P10 + PU )

N0

)
+ α2C

(
K2

20(P20 + PV )

N0

)
+ (1− α1 − α2)·

C

(
K2

10(P13 + c2PU + c3PV ) +K2
20(P23 + d2PV + d3PU ) + 2K10K20(

√
(c2PU )(d3PU ) +

√
(d2PV )(c3PV ))

N0

)
(3)

Maximizing S2 = S3: Similarly, using the Lagrangian
method to maximize S2 leads to the following throughput:

S⋆
2 (α) =

α

2
log
(
1 +

K2
12

N
P ⋆
z

)
+
α

2
log
(
1 +

K2
10

N
P ⋆
z

)
+

1− 2α

2
log
(
1 +

2K2
10

N
P ⋆
x

)
where P ⋆

x = (1− 2α)−1(P −αP ⋆
z ) and P ⋆

z = P ⋆
10 +P ⋆

U is as
given in (7).

Maximizing S4: Finally, using the Lagrangian method to
maximize S4 leads to following optimal values:

P ⋆
13 =0; P ⋆

U1
=

1

2c

(
P +

αN

2K2
10

)
P ⋆
10 =

(
2− 1

2c

)(
P +

αN

2K2
10

)
− N

2K2
10

where c = c2 = c3. Then, with these optimum power
allocations and with any c > 0, S4 can be expressed as

S⋆
4 (α) =

1− 2α

2
+ 0.5log

(
0.5 + α+

2K2
10P

N

)
2) Maximizing each expression in (S1, S2, S4) s.t. the

power constraint and that it is equal to one other expression:

Maximizing S1 s.t. S1 = S2: To maximize S1 s.t. the power
constraints given that S1 = S2, using Lagrangian method, we
can get the optimal values at c2 = c3 = c and

P ⋆
z = P ⋆

10 + P ⋆
U = 0.5

(
−B +

√
B2 − 4C

)
where

B =
N

K2
12

+ α

(
N

K2
10

− N

K2
12

)
− 2P

C =
1− 2α

2

N

K2
10

(
N

K2
12

− N

K2
10

)
− P

(
N

K2
10

+
N

K2
12

)
P ⋆
x = P ⋆

13 + 2cP ⋆
U is obtained from the power constraint as(

(1− 2α)−1(P − αP ⋆
z )
)
. Finally, from the constraint S1 =

S2, P ⋆
13 is obtained as

P ⋆
13 =

0.5N

K2
10

(
2(

2
1−2α )F1 − 1

)

with

F1 =
α

2
log
(
1 +

K2
10

N
P ⋆
z

)
− α

2
log
(
1 +

K2
12

N
P ⋆
z

)
+
1− 2α

2
log
(
1 +

2K2
10

N
P ⋆
x

)
The above optimal values can be used as the optimal P13

if P ⋆
13 > 0. If P ⋆

13 < 0, we make it 0 and solve the problem
again. Then, we have P ⋆

x = 2cP ⋆
U =

(
(1− 2α)−1(P − αP ⋆

z )
)

and P ⋆
z is the solution of the following equation:

log
(
N +K2

12P
⋆
z

N +K2
10P

⋆
z

)
=

1− 2α

α
log
(
1 +

2K2
10

N
P ⋆
x

)
Maximizing S1 s.t. S1 = S4: Following the same steps in

the previous optimization, we can obtain the optimal power
allocations for S1 s.t. the power constraint and S1 = S4. For
a fixed α, we get c2 = c3 = c and

P ⋆
z =

0.5

1 + α

(
−B +

√
B2 − 4(1 + α)C

)
where

B =−
(
Q+ 0.25(1− 2α)G+ 3P + 1.5

N

K2
10

)
C =0.5(1− 2α)GQ+K

(
2P +

N

K2
10

)
where G = 8cP ⋆

U and Q = N
K2

10
− N

K2
12

. Finally, P ⋆
13 = P ⋆

x −
2cP ⋆

U= P ⋆
x − 0.25G is the solution of

P ⋆
x − 0.25G =

0.5N

K2
10

(
2(

2
1−2α )F2 − 1

)
with

F2 =αlog
(
1 +

K2
10

N
P ⋆
z

)
− αlog

(
1 +

K2
12

N
P ⋆
z

)
+
1− 2α

2
log
(
1 +

K2
10

N
(2P ⋆

x + 0.5G)

)
Again, the above results is used if P ⋆

13 > 0. If P ⋆
13 < 0, we

set it to 0 and solve again to get P ⋆
z from the solution of

log
(
N +K2

12P
⋆
z

N +K2
10P

⋆
z

)
=

1− 2α

2α
log
(
1 +

4K2
10

N
P ⋆
x

)
where P ⋆

x =
(
(1− 2α)−1(P − αP ⋆

z )
)
.



P ⋆
z = P − (1− α)

N

K2
12

− N

2K2
10

+

√
N2

2k210K
2
12

+ (1− α)2
N2

K4
12

+
N2

K4
10

(0.75− α) +
NP

K2
12

(2α− 1) + P 2 (7)

Maximizing S4 s.t. S4 = S2: Finally, using the Lagrangian
method to maximize S4 s.t. the power constraints and S4 = S2

leads to the optimal values of c2 = c3 = c and

P ⋆
z = 0.5

(
B +

√
B2 + 4C

)
where

B =2P − α

(
N

K2
10

+
N

K2
12

)
C =P

(
N

K2
10

+
N

K2
12

)
+

1− 2α

2

N

K2
10

Q

P ⋆
13 = P ⋆

x − 2cP ⋆
U is obtained from the solution of

P ⋆
13 =

0.5N

K2
10

(
2(

2
1−2α )F3 − 1

)
with

F3 =
α

2
log
(
1 +

K2
12

N
P ⋆
z

)
− α

2
log
(
1 +

K2
10

N
P ⋆
z

)
+
1− 2α

2
log
(
1 +

2K2
10

N
P ⋆
x

)
These optimum values are used if P13 > 0. If P13 < 0, set
P13 = 0 and solve again to get P ⋆

z from the solution of

log
(
N +K2

12P
⋆
z

N +K2
10P

⋆
z

)
=

1− 2α

α
log
(
N + 4K2

10P
⋆
x

N + 2K2
10P

⋆
x

)
where P ⋆

x = (1− 2α)−1(P − αP ⋆
z ).

The above 6 optimizations give six optimal expressions
at a fixed alpha. We can then find the optimum value α⋆

that provides the largest throughput by plotting these optimal
expressions versus α. However, since the optimal point must
be for the same power allocations for all expressions, we
also need to plot each expression in (S1, S2, S4) at the
optimal powers obtained from the optimizations of the other
expressions. For example, we need to plot S1 at the optimal
powers of (maxS2 s.t. S2 = S4), S2 at the optimal powers
of (maxS1 s.t. S1 = S4) and S4 at the optimal powers of
(maxS1 s.t. S1 = S2). Then for each group of lines at the
same power allocation, identify either its intersection or, in
case the lines do not intersect, the optimal point on the lowest
line. Among the 6 obtained points (corresponding to the 6
optimizations), the optimal α⋆ is the point that gives the largest
sum rate.

C. Asymptotic analysis
From (2), we can see that as K12 → ∞, S4 becomes

the minimum and S⋆
4 (α) is maximized as α → 0. There-

fore, compared with the classical MAC, the throughput gain,
G = S⋆

4 − SMAC , approaches

G → 0.5log
(
1 +

2K2
10P

N + 2K2
10P

)
(8)

as K12 → ∞. Furthermore, we can see that as P → ∞, then
G → 0.5.

V. NUMERICAL RESULTS

Figure 2 illustrates the achievable rate region for the pro-
posed scheme compared with the classical MAC. The results
are obtained for the symmetric case by using (3) with the
following values: P = 2, K10 = 1, N = 1, and for different
values of K12. This figure shows that cooperation leads to a
larger rate region even with half duplex constraint.

Figure 3 shows the optimized sum rates given Section IV.
The figure shows no non-trivial intersections among the lines
with the same power allocations (plotted as pairs of lines in the
same color). However, we can also see that (Smax

1 s.t. S1 = S4)
is lower than S2 at (maxS1 s.t. S1 = S4) but is above the
other two dashed lines. Furthermore, the maximum of the line
(Smax

1 s.t. S1 = S4) is below the lines Smax
1 , Smax

2 , Smax
4 . Hence,

for this value of K12 = 3, the optimal sum rate corresponds
to the maximum of the line (Smax

1 s.t. S1 = S4) which is at
α = 0.25. By varying K12 and P , we can find the optimum
value of α for each case.

In Figure 4, we plot the optimum value of α versus K12

for different transmit powers. From this figure, we can see that
the optimal value of α decreases as the inter-user channel gain
improves. This can be explained as follows. As the channel
quality between the two users improves, they can exchange
their information in a smaller portion of time and spend a
bigger portion to cooperatively transmit their information to
the destination. Moreover, as K12 → ∞, α → 0 (but not
equal to 0), the two users only need an infinitesimally small
portion of time to exchange their information and then can
fully cooperate during the rest of the time.

Figure 5 illustrates the improvement in throughput of the
proposed cooperative scheme compared with the classical
MAC. Once K12 is bigger than K10, our scheme starts to
outperform the classical MAC. As K12 increases, the through-
put gain increases. This figure suggests that the absolute
throughput gain depends little on the transmit power and is
more sensitive to the value of K12. Even at a small value
of K12 (for example at 4 times the direct link strength),
this throughput gain is noticeable. As given in (8), the gain
eventually saturates to 0.5 bits/sec/Hz.

VI. CONCLUSION

We proposed a novel half-duplex cooperative scheme with
partial decode-forward relaying and variable time duration.
We then analyze the optimal power allocations and time
durations that maximize the sum rate of the symmetric case.
The optimization provides closed form expressions for the
maximum sum rate. The results showed that if the inter-user
channel quality is worse than that between each user and the
destination, the performance of our scheme is the same as
that of the classical MAC. On the other hand, as the inter-
user channel quality increases, our scheme outperforms the
classical MAC. It gives a higher throughput and a larger rate
region. This result is encouraging for half-duplex cooperative
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communication and calls for further analysis for the fading
case.
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