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Abstract— We study a sensing algorithm for cognitive radios
based on Bayesian energy detection while utilizing available
side information. The side information available to the cognitive
user can consist of: (i) spatial locations of the cognitive and
primary receivers, (ii) received power of the primary-signal at
the cognitive user, and (iii) a priori transmission probability of
the primary user. Considering several scenarios with different
combinations of side information, we derive the respective, opti-
mal detection thresholds for the cognitive user. Numerical results
using these thresholds show significant performance improvement
based on the side information. Specifically, information on spatial
locations can help stabilize the performance for a wide range of
the primary activity factor. Highly skewed a priori primary-
transmission probability further helps improve the performance
dramatically.

I. INTRODUCTION

A ccording to the FCC (Federal Communications Commis-
sion) recent report on spectrum utilization [1], measure-

ment data shows that licensed frequency bands are heavily
under-utilized. As a way of making more efficient use of the
limited frequency resource, researchers have been studying
cognitive radios, devices that can adapt their operating charac-
teristics to the channel condition, as a candidate for secondary
spectrum access.

In order for a cognitive radio to transmit its own information
without creating inhibiting interference to the licensed (pri-
mary) users, an important requirement is for it to successfully
sense an idle channel in a particular frequency band. A
popular method for detecting the primary user’s signal is
energy detection, which measures the received signal power
and makes a decision on the channel occupancy based on a
Bayesian estimate. This kind of detector has been considered
as the decision rule for the spectrum vacancy because it is very
simple and does not require the knowledge on the primary
users signal structure. There have been extensive studies
on this detection method. The simplest energy detection of
unknown deterministic signal in AWGN channel is studied in
[2]. In [3], performance of energy detection in a multipath
channel is analyzed. Collaboration among the secondary users
is recently proposed to improve the performance of spectrum
sensing in [4], [5]. A cross-layer spectrum sensing and access
policy are proposed and analyzed in [6]. In particular, the
fundamental limit of energy detectors is studied in [7].

In most previous research, performance of the energy de-
tector is studied mainly in terms of a given false alarm
probability, miss detection probability or collision probability.

Research on determining the detection threshold, however,
has rarely been done. In addition, if the cognitive users
have some side information about the primary users, they
can use this information in setting the detection threshold to
improve the performance of both the primary and secondary
networks. Such side information can include spatial locations
of the primary and secondary transmitter and receiver, the
a priori probability of the primary user’s transmission, or
both. As an example, at some time periods, (e.g. around 3
a.m.), there may be little possibility that the primary users
are active, which means the secondary users can access the
spectrum more aggressively. As another example, given the
same miss detection probability, the interference at the primary
receiver would be different depending on the distance from the
secondary transmitter.

In this paper, we study a cognitive sensing scheme based
on Bayesian energy detection that utilizes side information.
The sensing threshold is set as a total cost consisting of
the interference caused from the secondary transmitters when
the spectrum is in-use and the transmission opportunity loss
experienced by the secondary users not operating when the
spectrum is idle. Depending on the available side information
about the users locations and/or a priori primary-transmission
probability, we derive the detection threshold minimizing the
total cost. Numerical comparisons illustrate the gain obtained
by utilizing the side information.

This paper is organized as follows. In Section II, we set up
the problem by introducing the network and channel models.
In Section III, we describe the sensing algorithms for various
side information scenarios. Section IV presents the numerical
results illustrating the performance of these algorithms. We
provide some concluding remarks in Section V.

II. PROBLEM SETUP

A. Network Configuration

Consider a network whose elements are located in a circular
region, in which a single primary Tx-Rx pair and a single
secondary Tx-Rx pair exist. The primary Rx is located at the
center of the disc with radius Rp. The primary Tx is located
within the disc with uniform probability. Let its location be
Ptx = (sp, θp) in the polar coordinate system. The secondary
Tx is also randomly placed within the disc at location Stx =
(spc, θpc). Its corresponding Rx location is Srx = (sc, θc)
relative to the secondary Tx. The secondary Tx and Rx can
communicate provided they are less than Rc apart (sc ≤ Rc)
(see Fig. 1).
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Fig. 1. Network Configuration.

We also assume a protected region, defined as a disc of
radius r centered at the primary tx and secondary rx with no
other radios inside. This region is to exclude the possibility
that two interfering radios are placed at the same location. In
Fig. 1, the circles centered at the primary Rx and the secondary
Tx with radius r are the protected regions.

B. Signal and Channel Models

We consider a fading channel with path loss. For a Tx-Rx
pair with distance d between them, denote the channel as h,
then

h ∼ CN (0, σ2
h), (1)

where channel variance σ2
h is a function of the pathloss as

σ2
h =

A

dα
. (2)

Here A is a constant dependent on the frequency, and α is
the pathloss exponent. Without loss of generality, we assume
A = 1.

Let the transmit power of the primary user be P and that
of the cognitive user be Pc. Similar to conventional energy
detectors, the cognitive user needs to perform a hypothesis
testing to decide between the following two hypotheses:

H0 : y = z (3)

H1 : y = x + z (4)

where x is the complex signal received at the secondary user
from the primary Tx after experiencing path loss and fading,
and z is the thermal noise. They both have complex Gaussian
distributions as

x ∼ CN (0, Pσ2
h) (5)

z ∼ CN (0, σ2
z), (6)

where σ2
h is given in (2) and the noise power σ2

z is fixed.

III. COGNITIVE SENSING BASED ON ENERGY DETECTION

The cognitive Tx-Rx pair should operate in such a way to
minimize the interference to the primary Rx while fully utiliz-
ing the frequency band at primary-idle times. This objective
can be accomplished by setting the threshold γ to minimize
the following cost function:

J =
∫

· · ·
∫ (

Ipc(spc) Pr(H0|H1, γ) Pr(H1)︸ ︷︷ ︸
Interference

+ Ic(sc) Pr(H1|H0, γ) Pr(H0)︸ ︷︷ ︸
Transmission Opportunity Loss

)

· f(sc, θc, spc, θpc, sp, θp) dsc dθc dspcdθpcdspdθp (7)

where

• Pr(H0|H1, γ) and Pr(H1|H0, γ) are the Miss Detection
Probability (PMD) and False Alarm Probability (PFA),
conditioned on the detection threshold γ, respectively.

• Pr(H1) is the probability of the primary user transmit-
ting, and Pr(H0) = 1 − Pr(H1). Denote λ1 = Pr(H1).

• Ipc(spc) is the potential interference to the primary Rx
caused by the cognitive Tx when it misses the primary
Tx’s signal, and Ic(sc) is the link quality between the
cognitive Tx and Rx pair. These two quantities can be
written as

Ipc(spc) = Pcs
−α
pc (8)

Ic(sc) = Pcs
−α
c (9)

where Pc is the transmit power of the cognitive user and
α is the path loss exponent.

• f(sc, θc, spc, θpc, sp, θp) is the joint density function of
the location parameters.

The detection threshold γ can be determined by minimizing
J based on available side information. In this paper, we con-
sider side information as some combinations of the following
values:

• σ2
x: the power of the received primary-signal at the

cognitive radio. From Eqs. (2) and (5), σ2
x depends on

(spc, θpc) and (sp, θp) as

σ2
x = P

(
s2

p + s2
pc − 2spspc cos(θp − θpc)

)−α/2
(10)

• σ2
z : the thermal noise power

• λ1: the a priori probability of the primary user transmit-
ting (λ1 = Pr(H1)).

• the locations Stx = (spc, θpc) and Srx = (sc, θc).
In the following subsections, we will determine the detec-

tion threshold to minimize the cost function in Eq. (7) for
various side-information scenarios.

A. When σ2
x, σ2

z , Stx, Srx, λ1 are available

In this case, the cognitive transmitter knows the locations
of both its cognitive receiver and the primary receiver. These
locations determine the statistics of the received primary-signal
at the cognitive Tx.
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Given the location Stx = (spc, θpc), Srx = (sc, θc), and σ2
x,

minimizing the cost function in (7) is equivalent to minimizing
the following simplified cost:

J0 = Ipc(spc) Pr(H0|H1, γ) Pr(H1)
+ Ic(sc) Pr(H1|H0, γ) Pr(H0) (11)

Here J0 is the Bayes Risk with the costs of Ipc(spc) and
Ic(sc) assigned to the miss detection and false alarm errors,
respectively. With side information σ2

z and λ1, the optimal
decision rule is

Pr(y|H1) Pr(H1)Ipc(spc)
Pr(y|H0) Pr(H0)Ic(sc)

H1

≷
H0

1 (12)

⇐⇒
1√

2π(σ2
x+σ2

z)
exp

− y2

2(σ2
x+σ2

z)

1√
2πσ2

z

exp
− y2

2σ2
z

H1

≷
H0

1 − λ1

λ1

Ic(sc)
Ipc(spc)

.

The Log-Likelihood Ratio (LLR) can then be computed as

T (x) = x2

H1

≷
H0

σ2
z

σ2
x

(σ2
x + σ2

z)
[
1
2

ln
(

1+
σ2

x

σ2
z

)
+ ln

1−λ1

λ1
− ln ρ(spc, sc)

]

where

ρ(spc, sc)
�
=

Ipc(spc)
Ic(sc)

=
(spc

sc

)−α

. (13)

Denote

σ2 =
σ2

z

σ2
x

(σ2
x + σ2

z), (14)

this leads to the optimal detection threshold as

γ0
�
= σ2

[
1
2

ln
(

1 +
σ2

x

σ2
z

)
+ ln

1 − λ1

λ1
+ α ln

spc

sc

]
. (15)

With the given side information, the optimal detection
threshold γ0 depends on the distance between the cognitive Tx
and the primary Rx (Spc), the distance between the cognitive
Tx and Rx (Sc), as well as the a priori probability λ1. As the
cognitive Tx approaches closer to the primary Rx, it should
decrease the threshold so that the miss detection probability
decreases. This is intuitively appealing because the cognitive
Tx may cause more interference to the primary Rx due to miss-
detection as it comes closer. On the contrary, as the cognitive
Tx moves away from the primary Rx, the threshold should
be increased so that the false alarm probability decreases. In
this latter case, the losses for the cognitive user from missing
the transmission opportunities are more important than the
interference caused to the primary Rx.

In some cases, γ0 can be negative, which always makes the
detector decide in favor of H1. Thus we can set the threshold
as

Γ = max(0, γ0) (16)

The detection performance can be analyzed by noting that

T (x)
σ2

z/2
∼ χ2

2 under H0 (17)

T (x)
(σ2

x + σ2
z)/2

∼ χ2
2 under H1. (18)

The false-alarm probability PFA of the detector therefore is

Pr(H1|H0) = Pr(T (x) > Γ|H0)

= Pr
(

T (y)
σ2

z/2
>

Γ
σ2

z/2

∣∣∣∣H0

)

= exp
(
− Γ

σ2
z

)
, (19)

and the miss-detection probability PMD is

Pr(H0|H1) = Pr(T (x) < Γ|H1)

= Pr
(

T (x)
(σ2

x + σ2
z)/2

>
Γ

(σ2
x + σ2

z)/2

∣∣∣∣H1

)

= 1 − exp
(
− Γ

σ2
x + σ2

z

)
. (20)

B. When σ2
x, σ2

z , Stx, λ1 are available

In this case, the cognitive transmitter knows the location
of the primary receiver but not its own (cognitive) receiver.
Then in the cost function (7), we need to perform the
integration over all possible cognitive Rx locations Srx, which
is independent of the known Stx and Ptx. Minimizing J in
(7) is then equivalent to minimizing

J1 =
∫ Rc

r

∫ +π

−π

J0f(sc, θc) dθc dsc (21)

= Ipc(spc) Pr(H0|H1, γ) Pr(H1) + Ic Pr(H1|H0, γ) Pr(H0)

where

f(sc, θc) =
2sc

R2
c − r2

· 1
2π

(22)

and

Ic =
∫ Rc

r

∫ +π

−π

Pcs
−α
c f(sc, θc) dθc dsc

=




2RY

R2
c − r2

ln(Rc/r) α = 2,

2RY

2 − α

R2−α
c − r2−α

R2
c − r2

α �= 2.
(23)

Minimizing J1 leads to the following optimal detection
threshold:

γ1 = σ2

[
1
2

ln
(

1+
σ2

x

σ2
z

)
+ln

1−λ1

λ1
−ln

Ipc(spc)
Ic

]
(24)

= σ2

[
1
2

ln
(

1+
σ2

x

σ2
z

)
+ln

1−λ1

λ1
+α ln spc+ln Ĩc

]
,

where Ĩc = Ic/Pc and σ2 is given in (14).
Again the threshold for this case depends on the distance

between the cognitive Tx and the primary Rx (Spc), which
affects σ2

x (10). As the cognitive Tx moves away from the
primary Rx, the threshold is increased. This is because the
interference signal power at the primary Rx is reduced, thus
the cognitive user can afford to increase the miss detection
probability, while decreasing its false-alarm probability. Here,
however, because Srx is unknown, the uncertainty on the
location of the cognitive Rx is reflected in the last term, ln Ĩc,
which is always negative. Instead of using the precise location
sc as in the threshold γ0 (15), the term ln Ĩc in γ1 (24) captures
the average effect over all possible cognitive Rx locations.
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C. When σ2
x, σ2

z , Srx, λ1 are available

Opposite to the second scenario, here the cognitive Tx
knows the location of its own (cognitive) Rx, but not the
location of the primary Rx. Similarly, though, the optimal
threshold can be obtained by taking the expectation of J0 in
(11) over all Stx locations as

J2 =
∫ Rp

r

∫ +π

−π

J0 Pr(spc, θpc) dθpc dspc (25)

= Ipc Pr(H0|H1,γ) Pr(H1)+Ic(sc) Pr(H1|H0, γ) Pr(H0)

where

Ipc =




2RY

R2
p − r2

ln(Rp/r) α = 2,

2RY

2 − α

R2−α
p − r2−α

R2
p − r2

α �= 2.
(26)

The optimal detection threshold now becomes

γ2 = σ2

[
1
2

ln
(

1+
σ2

x

σ2
z

)
+ ln

1−λ1

λ1
− ln

Ipc

Ic(sc)

]
(27)

= σ2

[
1
2

ln
(

1 +
σ2

x

σ2
z

)
+ ln

1 − λ1

λ1
− ln Ĩpc − α ln sc

]
,

where Ĩpc = Ipc/Pc and σ2 is given in (14).
As in the first scenario, the threshold increases as the cog-

nitive Rx approaches its Tx so that the false alarm probability
decreases. This is to reduce the transmission opportunity loss,
which would, otherwise, be high when the cognitive Tx-Rx
pair is close. The lack of information on the distance between
the cognitive Tx and the primary Rx is reflected in the average
term, − ln Ĩpc, which is always positive in this case.

D. When σ2
x, σ2

z , λ1 are available

In this case, no location information is available to the
cognitive Tx (either of the cognitive Rx or the primary Rx).
Based on the optimal threshold for previous scenarios in (24)
and (27), the detection threshold now can be written as

γ3 = σ2

[
1
2

ln
(

1 +
σ2

x

σ2
z

)
+ ln

1 − λ1

λ1
− ln

Ipc

Ic

]
(28)

= σ2

[
1
2

ln
(

1 +
σ2

x

σ2
z

)
+ ln

1 − λ1

λ1
− ln Ĩpc + ln Ĩc

]
.

This threshold uses the average information about both the
locations of the primary and cognitive Rx’s.

E. When λ1 is NOT available

For the corresponding cases when λ1 is unavailable, it is
easy to show that the detection thresholds can be obtained by
setting λ1 = 0.5 respectively in (15), (24), (27) and (28).

IV. NUMERICAL RESULTS

For the simulations, as depicted in Fig. 1, the primary Rx
is located at the center of the circle with radius Rp. The
primary Tx and the cognitive Tx are within this circle with
uniform distributions. The cognitive Rx is placed within a
circle of radius Rc centered at the generated cognitive Tx

location. We use the following values in the simulations:
Rp = Rc = 10, r = 1, α = 2.1. The primary Tx transmits
its signal with probability λ1 and with power P = σ2

z · Rα
p ,

making the mean SNR at the cell edge 0 dB. The transmit
power of the cognitive Tx is set to be Pc = σ2

z · Rα
c for the

same reason. We repeat random generations of the locations
for 30,000 times and perform the energy detection 1,000 times
for each set of locations. For comparison, we also included
performance of the standard Constant False Alarm Detector
(CFAR) [8] with PFA = 0.001 and 0.01, without any side
information except σ2

z .
In Fig. 2-4, we compare the cases in which no a pri-

ori primary-transmission probability λ1 is available to the
cognitive user. The cognitive user can then use only side
information about spatial locations. Fig. 2 shows the total
costs in (7) of the detectors. The results are plotted against
Pr(H1). These plots show that information on the spatial
locations helps improve detector performance. The detector
with all location information on both Stx and Srx performs
the best, while the detector with the information on either
Stx or Srx are comparable in the performance. These three
detectors performance depends little on the (unknown) primary
activity factor λ1. The performance of the standard CFAR, on
the other hand, depends heavily on the activity factor λ1. This
means that CFAR could hardly control the system performance
in the cognitive networks. The detector without any location
information, using only σ2

x and σ2
z , shows performance also

highly dependent on λ1. Comparison shows that information
on spatial locations not only stabilizes performance but also
improve it (in terms of the cost function J in (7)) between 1.5
to 3 times, depending on the primary activity factor and the
specific spatial information available.

Fig. 3 and Fig. 4 respectively show the corresponding inter-
ferences and the transmission opportunity losses of the studied
detectors. They show interesting behavior of the detectors with
the knowledge of either Stx or Srx. For the detector knowing
Stx, the transmission opportunity loss is as low as that of the
detector knowing both locations, but the interference is higher
compared to the other detectors with location knowledge. The
detector with Srx creates as low an interference as the detector
with both locations, but its transmission opportunity loss is
higher than the other location-aware detectors and even higher
than the detector without any location information.

Fig. 5 and Fig. 6 include the effect of knowledge on λ1.
Fig. 5 compares the cases when Stx is unavailable, and Fig. 6
when Stx is available. We observe that, when λ1 is skewed
(λ1 �= 0.5), then the knowledge of λ1 can improve the detector
performance dramatically, regardless of presence or lack of
knowledge of location. The performance gain from knowing
λ1 increases as |λ1 − 0.5| increases.

V. CONCLUSION

In this paper, we have shown the benefits of side information
in improving the performance of cognitive sensing algorithms
based on the Bayesian energy detector. Side information helps
in minimizing the detection cost consisting of the interference
and the transmission opportunity loss. Specifically, we consid-
ered side information as the spatial locations of the cognitive
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and primary receivers, the power of the primary user’s signal
received at the cognitive user, the noise variance and the a pri-
ori probability of the primary user’s transmission. We derived
the optimal detection thresholds given various combinations
of the side information. Simulation results showed that the
studied side information can significantly improve the sensing
performance. The detector with information on both spatial
locations and a priori primary-transmission probability per-
formed the best. Specifically, the a priori primary-transmission
probability helps produce a large gain when it is highly skewed
(far from 0.5). Without the a priori primary-transmission
probability, the detector with all location information exhibited
the best and stable performance for wide range of unknown
primary activity factor. Our studies showed that both spatial
locations and a priori transmission probability are important
factors in improving cognitive sensing performance.
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