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Abstract— We study the optimum transmission scheme that
maximizes ergodic capacity in a X' — oo regime for 2 x 1 MISO
systems when the channel knowledge at the transmitter is charac-
terized by a known gain imbalance and a known PDF of the phase
shift between antennas. Such a channel scenario can arise in a
forward link at the base station when there is a single direct path
propagation. We show that the optimum transmit solution is beam-
forming on the mean value of the phase shift with unequal power
input to the antennas. When the phase is completely unknown, the
solution reduces to a single antenna transmission.

1. INTRODUCTION

Most of the existing work on multiple antenna coding assumes
that the channel is complex Gaussian distributed with zero mean.
Capacity achieving transmission characteristics have been stud-
ied widely for such channels [4, 5, 6]. In practice however, it
is often found that the wireless channel has a non-zero mean,
i.e., a finite K factor [2, 7]. This motivates the study of transmit
schemes for K factor channels.

In this paper we study a limiting case when the K factor
is infinity, which corresponds to a direct dominant path prop-
agation. The results however could be applicable to practical
channels with high K factors, say 20dB, which occur in practice
[7]. The transmit channel knowledge model assumes a perfectly
known antenna gain imbalance, including equal-gain, and a ran-
dom phase shift with a known PDF. This scenario is typical in
the forward link at a base station with direct path propagation
and large spacing ( =~ 10 carrier wavelengths) between the two
transmit antennas. We derive the optimum transmission scheme
from the ergodic capacity point of view, based on the known
channel gain imbalance, PDF of the channel phase shift and the
SNR.

In the next section, we will give details about the channel
model and assumptions. Section 3 will set up the problem based
on ergodic capacity and summarize the main results. The opti-
mum signal phase shift is then established in Section 4. Section
5 presents results for the optimum signal power allocation and
covariance magnitude for both cases of imbalance and balance
channel gains. Section 6 gives some simulation examples of
the results being applied to Ricean phase shift distribution. We
close with some concluding remarks in Section 7.
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Some notations used in this paper: E is expectation, (.)* is
complex conjugate and (.)* is the optimum value.

2. CHANNEL MODEL

Consider a MISO system with two transmit antennas. Assuming
a single direct propagation path and narrowband antenna array
[2], the channel can be modeled as a row vector [k ho] where

he = ae?®hy .

Here « is the channel gain ratio, ¢ denotes the phase shift be-
tween the two antennas and h; is a fixed complex channel gain.
The difference in antenna gains (when o # 1) is caused by the
local scattering from mounting structure near the antennas and

is often found in practice.
/
Tx %Xfﬁj d)hl

i

Fig. 1. Single path channel model.

The transmitter can obtain the channel in forward path by
estimating the reverse channel in TDD systems or through feed-
back from the receiver in FDD systems. In both cases, there is
likely an error in the estimation due to the time offset/lag be-
tween the channel measurement and its use. The antenna gain
is likely to be very stable and can be estimated accurately. We
therefore assume perfectly known «. The antenna phase shift,
however, is highly variable due to the large separation between
antennas, leading to errors in the phase estimate. We assume
the PDF of the phase shift ¢ is known but not the exact value
of the phase. This distribution is circular between 0 and 2.
The precise shape of the phase shift distribution depends on the
channel characteristics and the measurement method. A Dirac
delta distribution function corresponds to exact phase knowl-
edge, whereas a uniform distribution means no phase informa-
tion. In fast time varying channels, the phase measurements are
more error prone, hence the distribution will tend toward uni-
form.
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Our analysis requires that the phase shift distribution is sym-
metric around the mean ¢g. The exact power allocation at the
two transmit antennas does depend on the actual PDF of the
phase shift.

3. PROBLEM OVERVIEW

3.1. Problem Setup

We use the ergodic channel capacity under the sum power con-
straint on transmit antennas as the optimization criterion. It
is assumed that the receiver has full knowledge of the channel
[h1 hg], while the transmitter only knows the PDF f(¢) of the
phase shift and the channel gain ratio a. The ergodic capacity
of the channel is achieved by Gaussian input signal [z; 25]T
with zero mean [1] and a covariance matrix R, which satisfies

max Elog(l +~hR,, h*)
s.t. tr(Rys) = 1, ()

where + is the total signal to noise ratio with appropriate nor-
malization.
We can absorb h; into v and write the effective channel as
h=[1 a?],
where 0 < « < 1. Taking into account the total transmit power

constraint tr(R;,) = 1, the transmit signal covariance matrix
R, can be expressed as

n 1 peit

Reo=| 1w 1o, |- 2)
Here 7 is the fraction of total power allocated to the first an-
tenna, v is the signal phase shift and p is twice the magnitude
of the covariance between signals transmitted from the two an-
tennas, p = 2|E[x123]|. The three variables 7, ¢ and p define
the transmission scheme. The constraints on these variables be-
come

0 <n <1
- < ¢ <o
0 < p < 2¢nl-mn). 3)

The bounds on 7 follow immediately from its definition, where-
as the bounds on v result from a predefined domain of the signal
phase shift. The bounds on p come from the positive semidefi-
nite property of the covariance matrix R .

With these channel and signal models, and the assumption
that the phase distribution is symmetric around its mean ¢y, the
average mutual information can be written as

7= FElog(1+~hR,, h") “4)

— [ tog[2(1 ~ a?)n -+ vapeos(o+ o) + 90 + 1] £(0)do

—T

where 19 = ¢+ and f(¢) is symmetric around zero. We are
interested in maximizing (4) by choosing 7, 1) and p subject to
the constraints (3).
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3.2. Summary of Results

The optimum transmission scheme is defined by the transmit
covariance matrix R, which in turn is defined by 7, ¢ and p.
These are found based on the known channel parameters at the
transmitter, which are the channel phase shift distribution f(¢),
the channel gain ratio o and the SNR ~. The main results can
be summarized as

e The optimum signal phase shift ¢* is the negative of the
estimate channel phase shift ¢ or that plus 7, depending
on the specific phase shift distribution f(¢). The ¢* value
is independent of « and y. This is derived in Section 4.

e When the channel gain is imbalance (o < 1), the opti-
mum transmission scheme is always beamforming. The
optimum p* is a function of n*, and n* is a function of the
phase shift distribution f(¢), the channel gain imbalance
ratio o and the SNR ~y. This is derived in Section 5.1.

e When the channel gain is balance (o = 1), the optimum
solution space includes but is not limited to beamforming.
In this case, 77 vanishes in the average mutual information
expression (4). p* is a function of f(¢) and ~, then n*
can be chosen arbitrarily within its range subject to the
inequality on p* in (3). This is analyzed in Section 5.2.

4. OPTIMUM ¢~

The optimum signal phase shift ¢)* is independent of the chan-
nel gain ratio o and the SNR ~, and hence, is treated separately
in this section.

Theorem 1 The optimum phase shift 1* between the transmit
signals from two antennas is the negative of the estimated chan-
nel phase shift ¢y or that plus w, depending on the channel
phase shift distribution f(¢). That is

Y =—¢o or Y*=m—¢o.

Proof. The original problem (1) is a convex optimization
one and hence has a unique solution, which leads to a unique
solution of ¥*. Due to symmetry of the phase distribution, from
(4), we can rewrite the average mutual information as

7 = / log [gz + 2gyap cos g cos ¢ +
0
Y22 p?(cos® thg + cos® ¢ — 1) | f(¢)de ,

where ¢ = (1 — a®)n + ya? + 1. This is a function of
z = cos g, which is an even function of g = ¢g + . If the
optimum z* is not 1 or —1, then there will be two different val-
ues of the optimum phase ¢* within the range [—m, 7| that sat-
isfy the original optimization problem. Therefore the optimum

value of z must be either 1 or —1, which leads to ¢)* = —¢q or
Y* = 1 — ¢g respectively. This is the result of the symmetry of
the channel phase shift distribution. g

The specific value for ¢)* depends on the phase shift distri-
bution function f(¢). The choice can be made by evaluating the
mutual information Z at the two boundary values ¢ = ¢ and
1 = T — ¢, then pick the value that makes Z larger. Without
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loss of generality, we assume that the phase shift distribution is
such that the optimum signal phase shift is ¥* = —¢q in the
next section.

5. OPTIMUM 7* AND p*

In this section we will derive the optimum set of n and p. It
turns out that the cases of imbalance channel gain (o < 1) and
balance channel gain (o« = 1) have significantly different impact
on the optimum 7n* and p*. While the solution of imbalance
channel gain case can be applied to the balance case too, the
latter has a larger solution space. Next we treat these two cases
separately.

5.1. Imbalance channel gain

We assume without loss of generality that antenna 1 always has
a higher gain than antenna 2, thus « is strictly less than 1. The
optimization problem now becomes

max /7T log[y(1 — a®)n + apycos ¢ + va? + 1] f(¢)do

0
st. 0 < n <1 5)

0 < p < 2¢ynl—m).

Optimum signal covariance magnitude p*

Theorem 2 With oo < 1, the optimum magnitude of the covari-
ance between the transmit signals from the two antennas is

n(l—mn). (6)

Hence the transmit signals has the form

pr=2

zo = Ce %z, (7

with { given by
I—n
(=4 —2.
n

In other word, the optimum transmission scheme reduces to sim-
ple beamforming with unequal power at each antenna.

Proof. Problem (5) is a convex optimization problem. Form
the Lagrangian functional

L(n,p) = Elog[vy(1—a®)n+ apycosd +ya® + 1]
—Alp—2v/n(1 —n)],

where A > 0. Then the optimizers n* and p* are the solutions of
the equations formed by setting the partial derivatives of L£(, p)
to zero. In particular, setting the partial derivative with respect
to 7 to zero leads to

2n—1
n(l—mn)

For a@ < 1, the LHS of the above expression is strictly greater
than O for all distributions of ¢ as the expression under the ex-
pectation is always positive. Thus A* > 0 and n* > % Since
A* is strictly positive, it means that the upper constraint on p
is tight (KKT conditions [3]), hence p* = 24/n(1 —n). This

V(1 —a?) } _
V(1 —a?)n+apycosp +1+ya2l
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maximum covariance magnitude can be achieved only when the
signal sent from one antenna is a scaled version of the signal
sent from the other antenna. Applying the phase shift result of
Theorem 1, the transmit signals become x2 = ¢ eIz, . O

Hence the optimum transmit strategy is to do beamforming
all the time, with the power at each antenna adjusted according
to the channel parameters. The optimum covariance matrix R,
always has rank one in this case.

Optimum power allocation n*

Replacing the optimum p* into the average mutual information
in (5), the problem then becomes finding 0 < 7 < 1 to maxi-
mize the following expression

Elog[(1 - ®)n + 20/n(1 — n) cos p + a* + 1/4] .
Since the above expression is concave in 7, the optimum 7n* is
the solution of

1— 2 1-2n
E[ o Vn(1—n)
_ 02 _ 24 1
(I—=a?)n+2ay/n(l —n)cos¢ +a? +

The optimum 7* is a function of f(¢), «, 7.

@ Ccos ¢

}:0. ®)

5.2. Balance channel gain

In this section we treat the case & = 1. With the optimum signal
phase * = —¢y, the average mutual information becomes

7= 2/0 log(pycos g+ + 1) f(¢)de .

Notice that the signal power allocation 7 does not appear in this
expression as a result of the balance channel gain. Therefore
in this case, the covariance magnitude p can be found indepen-
dently of 7 and the maximization can be taken over 0 < p < 1.

Optimum signal covariance magnitude p*

Since the above expression is concave in p, the optimum p* will
be the solution of

i ~ Ccos ¢ B
2/0 mﬂﬁb)dd’ =0. 9)

The optimum p* will depend on the specific phase distribution
f(¢) and the SNR ~.

0T _
op

Optimum power allocation n*

Here the optimum p* and 7 are only related to each other through

the inequality
P <2yl —n). (10)

Hence one can choose any power allocation value 7 that satisfies
this relation and design the signal according to the obtained op-
timum R,.. The rank of this covariance matrix is not restricted
to be one as in the imbalance channel gain case. The choice of
1*, which influences the rank of R, therefore can be divided
into two general categories:
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e R, rank one - Beamforming: Here we pick the value of
n* that meets the bound (10) with equality, which gives

1
=1V (0)?) (11

This is the same solution as the optimum scheme for im-
balance channel gain case (6). The optimum signal design
is then x5 = Ce~7%0x, where ( is given by

p

1+1-p%°

o R full rank: This can be done by picking a value of 1
that satisfies the inequality (10) strictly. The signal design
problem then becomes finding a coding scheme for the
given covariance matrix R.

(=

As a special case for both of the above categories, when
there is no phase estimate (equivalent to uniform phase shift dis-
tribution), then the optimum solution is p* = 0, which means
sending independent zero-mean Gaussian signals from two an-
tennas with the only constraint that the power adds up to one.
Using a single antenna and putting all the transmit power there
also achieves the capacity with no randomness, hence single an-
tenna transmission is preferred in this case. That is, n* = 1.

6. SIMULATION EXAMPLES

We use Ricean phase distribution for the channel phase shift in
the simulations. This distribution arises from the phase of a con-
stant phasor plus random zero-mean complex Gaussian noise
with equal variance on the real and imaginary parts [8, 10].
The phase estimate quality can be conveniently described by
the Ricean factor §. Assuming an estimated mean ¢y with a
given estimate quality 3, the phase shift distribution is

fa(6) = 5-e {1+ (12)
VB cos(¢ — ¢0)662 cos® (¢—¢o) [1 + erf( cos(¢p — gbo))] } .

If 8 = 0, the phase distribution is uniform, corresponding to no
phase estimate. When 8 — oo, the distribution converges to the
Dirac delta function, which means that the estimate is exact.

6.1. Imbalance channel gain

We solve equation (8) numerically to find n*. It turns out that
the SNR +y has a very little effect on *, which can be seen from
this equation as 1/~ can be approximated off for reasonably
large values of . Simulation results show that we get practi-
cally the same value for n* for all v > —20dB. Figure 2 shows
the plot of the optimum power allocation n* as a function of the
channel gain imbalance ratio o and the phase estimate quality
3, at SNR v = 10dB.

When 7 = 1, it means that only one antenna is used. This is
the case when no phase estimate exists (3 = 0), where one an-
tenna transmission on the stronger channel is optimum regard-
less of the actual «v value (o« > 1 here). As the phase estimate
quality increases, the scheme approaches transmit maximum ra-
tio combining (MRC) beamforming, which is optimum when
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Fig. 2. Optimum n* in imbalance channel gain case at SNR=10dB.

the channel is known perfectly at the transmitter. The MRC
beamforming power allocation is a function of « and is given as
nvre = (1 +a?)7h

6.2. Balance channel gain

Solving equation (9) with the Ricean phase distribution again
by numerical means, we obtain the plot for the optimum p* in
Figure 3. The value of p = 1 means beamforming where signal
sent from one antenna is a scaled version of signal sent from the
other, whereas p = 0 means independent signals from the two
antennas.

o
©

o
o

I
~

o
o

Optimum covariance magnitude p

-

o

oo
v

Phase estimate quality 8

Fig. 3. Optimum p* in balance channel gain case.

In case of a beamforming solution (R, rank one), the power
split between the two antennas (11) is regulated according to the
phase estimate quality § and the SNR ~. A plot of the optimum
power allocation n* versus [ at different values of  is shown
in Figure 4. Since the roles of the two antennas here are sym-
metric, we only show values for n* up to 0.5. Notice that in
this case, n* depends significantly on the SNR, in contrast to
the imbalance channel gain case.

If the phase estimate quality [ is above a certain threshold,
which is a function of the SNR -, then the integral on the LHS
of (9) is always non-negative for 0 < p < 1, which leads to only
beamforming being optimum (where p* = 1 and n* = % in this
particular case). This threshold is plotted in Figure 5.
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Fig. 4. Portion of the total power allocated to the first antenna in
beamforming with balance channel gain.
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Fig. 5. Phase estimate quality threshold above which only beamform-
ing is optimum for balance channel gain.

7. CONCLUSION

We have studied 2 x 1 MISO channels with partial transmit
channel knowledge when K — oo. The optimum signaling
scheme is shown to be beamforming on the estimated channel
phase with power adjusted according to the known parameters.
This is also an indication that beamforming is or close to be-
ing optimum in practical MISO channels with high K factors,
where the mean amplitude of the channel gain is known but the
channel phase is unknown and random.
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