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Abstract

Transmit channel side information (CSIT) is information about the channel available to
the transmitter. In multiple-input multiple-output (MIMO) wireless, CSIT can signifi-
cantly improve system performance by increasing the transmission rate and enhancing
reliability. The time-varying nature of the wireless channel, however, often results in par-
tial CSIT. Partial information poses challenges to signal design to exploit the CSIT and

to performance analysis of the resulting system.

This thesis focuses on exploiting partial CSIT in a single-user MIMO wireless system,
assuming perfect channel knowledge at the receiver. The thesis approaches this problem
in three steps: building a dynamic CSIT model, deriving the capacity gains with CSIT,
and designing optimal precoding schemes to exploit the CSIT. The results are applicable

to practical MIMO wireless systems.

Due to inherent delays in CSIT acquisition, CSIT modeling must account for channel
temporal variation. A dynamic CSIT model is accordingly constructed, using an initial
channel measurement, the delay, and the channel statistics. The CSIT consists of a
channel estimate and its error covariance, which function as an effective channel mean
and covariance, respectively. Both parameters depend on the channel temporal correlation
factor, indicating the CSIT quality. Parameterizing by this factor, dynamic CSIT covers
the range from perfect channel estimate at zero delay to the actual channel mean and

covariance as the delay grows.

Dynamic CSIT multiplicatively increases the capacity at low signal-to-noise ratios
(SNRs) for all multi-input systems. The optimal input signal then is typically simple
single-mode beamforming. At high SNRs, dynamic CSIT can additively increase the



capacity for systems with more transmit than receive antennas. The optimal signal can
drop modes at high SNRs, depending on the CSIT. Furthermore, a convex optimization
program is developed to find the MIMO capacity given a dynamic CSIT. Using this
program, a simple, analytical capacity lower-bound, based on the Jensen-optimal input,
is shown to be tight in many cases.

Linear precoders can optimally exploit CSIT. A linear precoder functions as a multi-
mode beamformer, spatially directing signal and allocating power based on the CSIT.
A precoder is designed to exploit a dynamic CSIT in systems employing a space-time
block code. The design relies on a dynamic water-filling algorithm, in which both the
beam direction and power evolve with each water-filling iteration. The precoder achieves
a range of significant SNR gain and is robust to changing CSIT quality. Another pre-
coder is designed for high-K channels, given the CSIT as the channel amplitudes and the
channel phase-shift distribution. This CSIT helps simplify the precoder to single-mode
beamforming, with per-antenna power allocation dependent on the phase-shift distribu-

tion.
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Chapter 1

INTRODUCTION

During the last decade, wireless communication has enjoyed tremendous growth in both
voice and data appliances. Cell phones and laptops with wireless capability are becoming
increasingly common. Not only the voice quality of cell phones has been improving, the
data rate of wireless LANSs has also reached unprecedented levels of hundreds of megabits
per seconds [1, 2], allowing seamless connectivity. New capabilities are being realized,
such as providing broadband voice and data on a single unit [3], video broadcasting on
cell phones [4], and replacing cables with high-speed wireless connectors [5].

One of the technological enablers of such advances, and a breakthrough in wireless
technology, is the use of multiple antennas at both the transmitter and the receiver.
Multiple-input multiple-output (MIMO) systems allow a growth in transmission rate lin-
ear in the minimum of the numbers of antennas at each end [6]. They also enhance link
reliability and improve coverage [7]. MIMO is now entering next generation cellular and
wireless LAN products [2, 3, 8], with the promise of widespread adoption in the near
future.

While the benefits of MIMO are realizable when the receiver alone knows the com-
munication channel, these are further enhanced when the transmitter also knows the
channel. The value of transmit channel knowledge can be significant. For example, in a
4-transmit 2-receive antenna system, transmit channel knowledge can more than double
the capacity at —5dB SNR and add 1.5bps/Hz to the capacity at 5dB SNR. Such SNR

ranges are common in practical wireless systems. Therefore, exploiting transmit channel
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side information (CSIT) in MIMO wireless is of great practical interest.

The random time-varying wireless medium, however, makes it difficult and often ex-
pensive to obtain perfect CSIT. In closed-loop methods, CSIT is degraded by the limited
feedback resources, associated feedback delays, and scheduling lags, especially for mobile
users with a small channel coherence time [9]. In open-loop methods, antenna calibration
errors and turn-around time lags again limit CSIT accuracy [10]. Therefore, the trans-
mitter often only has partial channel information. Schemes exploiting partial CSIT thus

are both important and necessary.

This thesis focuses on modeling partial CSIT, analyzing capacity benefits of the CSIT,
and designing schemes to exploit it. A major challenge in modeling CSIT is capturing
the channel time-variation. Due to delays in acquiring channel information, this time-
variation directly affects the CSIT quality and results in partial information. Nevertheless,
partial CSIT can still increase the channel capacity significantly. The capacity gain from
CSIT is subsequently quantified. To realize this gain, a transmit processing technique
called precoding, which operates on the signal before transmitting from the antennas,
can be used. For many common forms of partial CSIT, a linear precoder is optimal from
an information theoretic viewpoint [11, 12, 13]. A linear precoder functions as a multi-
mode beamformer, which optimally matches the input signal on one side to the channel
on the other side. It decouples the transmit signal into orthogonal spatial eigen-beams
and sends higher power along the beams where the channel is strong, but reduced or no

power along the weak, thus enhancing system performance.

In this introduction, the benefits of transmit channel side information are first dis-
cussed with concrete examples. A review follows on the information-theoretic foundation
for exploiting CSIT, establishing the optimality of linear precoders. The function of a lin-
ear precoder is then analyzed. These discussions form the foundation on which this thesis
is built. The thesis contribution is then concisely described. The last section outlines the

focus of each chapter in the thesis.
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Figure 1.1: Capacity of 4 x 2 channels with and without CSIT.

1.1 Benefits of transmit channel side information

A wireless channel exhibits time, frequency, and space selective variations, known as
fading. This fading arises due to Doppler, delay, and angle spreads in the scattering
environment [14, 15, 7]. This thesis focuses on the time-varying channel, assuming fre-
quency flat and negligible angle spread. A frequency-flat solution, however, can be applied
per sub-carrier in a frequency-selective channel deploying orthogonal frequency-division
modulation (OFDM).

In a frequency-flat MIMO system, channel information can contain two dimensions:
temporal and spatial. Temporal CSIT — channel information across multiple time in-
stances — provides negligible capacity gain at medium-to-high SNRs [16]. Spatial CSIT,
which is channel information across antennas, on the other hand, offers potentially sig-
nificant increase in channel capacity at all SNRs. Figure 1.1 provides an example of this
capacity increase for two 4 x 2 channels. For the i.i.d channel, capacities with perfect
CSIT and without are plotted. For the correlated channel with rank-one transmit covari-
ance, capacities with the covariance knowledge and without are shown. The capacity gain
from CSIT at high SNRs here is significant, reaching almost 2 bps/Hz at 15 dB SNR.
At lower SNRs, although the absolute gain is not as high, the relative gain is much more

pronounced. For both channels, CSIT helps to double the capacity at —5 dB SNR.
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Figure 1.2: Error performance of a 4 x 1 system with and without CSIT.

Spatial CSIT helps to not only increase capacity but also enhance system reliability
and reduce receiver complexity. Reliability can be measured by the system error per-
formance at a fixed transmission rate. By exploiting spatial CSIT, the error rate can
significantly decrease at the same SNR. Viewing it another way, the system can achieve
the same reliability with less transmit power. Figure 1.2 provides an example of such an
SNR gain in a 4 x 1 system using QPSK. Without CSIT, the system employs an orthog-
onal space-time block code [17], while with perfect CSIT, it performs beamforming. At
1073 bit error probability, the CSIT provides 6dB gain in SNR, implying reduced transmit
power by a factor of 4. Alternatively, at 7dB received SNR, the CSIT helps lower the error
probability 20 times. The next section explores the foundation for optimal processing to

exploit CSIT.

1.2 Foundation for exploiting CSIT

This section reviews the information theory background for a fading channel with causal
side information. The theory can be established by first examining a scalar channel [11].
Consider a frequency-flat time-varying channel h(s) with causal channel-state information
U, at the transmitter and perfect at the receiver, where s denotes the state. Given the

current CSIT Us, the channel h(s) is assumed to be independent of the past Uf_l =
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Figure 1.3: An optimal configuration for exploiting CSIT in a MIMO fading channel.

{Ul, UQ, Us—l}:
Pr (h(s)|UF) = Pr ((s)|UL) - (L1)

This condition enables the channel capacity to be a stationary function of the CSIT and
not depend on the entire CSIT history. The receiver is assumed to know how the CSIT is

used. The channel capacity with an average input power constraint E[|X,|?] < P is then

C:m?XE [%log(l—khf(U))] , (1.2)

where the expectation is over the joint distribution of h and U, and f(U) is a power

allocation function satisfying the constraint E[f(U)] < P.

This result implies that it is capacity-optimal to separate channel coding and the
CSIT-exploiting function. The capacity of a channel with CSIT can be achieved by a
single Gaussian codebook designed for the channel without CSIT, provided that the code-
symbol power is dynamically scaled by an appropriate CSIT-dependent function f(U).
The combination of this CSIT-dependent function and the channel creates an effective
channel, outside of which coding can be applied as if the transmitter had no channel
side-information. This insight, in fact, can be traced back to Shannon [12]. For the scalar

fading channel, the CSIT-exploiting function is simply dynamic power-allocation.

Subsequently, the result has been extended to the MIMO fading channel [13]. The
channel state H(s) is now a matrix, and the optimal CSIT-exploiting function becomes
a weighting matrix — a linear precoder. Specifically, the capacity-optimal input can now

be decomposed as

X = F(U,)C. (1.3)
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Figure 1.4: A linear precoder as a beamformer.

Here, C is a codeword optimal for an i.i.d Rayleigh-fading MIMO channel without CSIT,
generated from a complex Gaussian distribution with zero-mean and an appropriate co-
variance PI. The CSIT-exploiting function F(Us) is a weighting matrix, which directs
signal and allocates power spatially. In other words, the capacity-achieving signal is zero-
mean Gaussian-distributed with the covariance FF*. This optimal input configuration is

depicted in Figure 1.3.

These results establish important properties of capacity-optimal signaling for a fading
channel with CSIT. First, it is optimal to separate the CSIT-exploiting function and chan-
nel coding, the latter designed for the channel without CSIT. Second, a linear precoder
is optimal for exploiting CSIT. The separation and linearity properties are the guiding

principles for precoder designs in single-user MIMO systems.

1.3 Function of a linear precoder

A linear precoder functions as the combination of an input shaper and a multi-mode
beamformer with per-beam power allocation. Consider the singular value decomposition
of the precoder matrix

F =UpDV5. (1.4)
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Figure 1.5: Transmit radiation patterns without (a) and with (b) precoding, based on
four orthogonal eigen-beams. The outer-most line represents the total radiation pattern,
and other lines are the patterns of the four beams.

The orthogonal beam directions (patterns) are the left singular vectors Up; the beam
power-loadings are the squared singular values D?. The right singular vectors Vp form
the input shaping matrix, combining the input symbols from the encoder to feed into each
beam. The structure is shown in Figure 1.4. The beam directions and power-loadings are

influenced by the CSIT, the design criterion, and often, the SNR.

To ensure a constant average sum-transmit-power from all antennas, the precoder

must satisfy the power constraint

tr(FF*) = 1. (1.5)

This condition presumes that the input codeword C has been normalized for power ac-
cordingly.

Essentially, a linear precoder has two effects: decoupling the input signal into orthog-
onal spatial eigen-beams, and allocating power over these beams, based on the CSIT.
If the precoded orthogonal eigen-beams match the channel eigen-directions (the eigen-
vectors of H(s)*H(s)), there will be no interference among signals sent on these beams,

creating parallel channels and allowing transmission of independent signal streams. This
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effect, however, requires perfect CSIT. With partial CSIT, the precoder performs its best
to approximately match its eigen-beams to the channel eigen-directions, reducing the
interference among these beams. This is the decoupling effect. Moreover, the precoder
allocates power on these beams. For orthogonal eigen-beams, if all the beams have equal
power, the radiation pattern of the transmit antenna array is isotropic, as in the ex-
ample on the left in Figure 1.5. If the beam powers are different, however, the overall
transmit radiation pattern will have a specific shape, as shown on the right in Figure
1.5. By allocating power, the precoder effectively creates a radiation pattern matched
to the channel, based on the CSIT, so that higher power is sent in the directions where
the channel is strong and reduced or no power in the weak. More transmit antennas will
increase the transmitter ability to finely shape the radiation pattern and, therefore, are

likely to deliver more precoding gain.

1.4 Thesis contribution

This section summarizes the contribution of this thesis. The thesis focuses on study-
ing channel side-information at the transmitter (CSIT), while assuming perfect channel
knowledge at the receiver. Its contribution can be divided into 3 parts: characterizing
types of channel information and building a dynamic CSIT model; optimizing for the
capacity and deriving the capacity gain and optimal input with the CSIT; and designing

optimal precoding schemes to realize the gain.

1.4.1 Dynamic CSIT modeling

A major challenge in wireless communication is the time-variation of the channel. This
time-variation creates difficulty in obtaining channel information, which is required for
best performance. While the channel can be measured directly at the receiver with
sufficient accuracy, the transmitter must obtain channel information indirectly, using
either reciprocity or feedback. In a time-varying channel, the delay involved in such a

process can degrade the information accuracy.
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The first contribution is characterizing channel information and constructing a dy-
namic CSIT model, taking into account channel time-variation. The model relies on
stochastic processes and estimation theories. Derived from a potentially outdated chan-
nel measurement and the channel statistics, this dynamic CSIT consists of a channel
estimate and its error covariance, acting as the effective channel mean and covariance.
Both parameters depend on a temporal correlation factor, indicating the CSIT quality.
Depending on this quality, the model covers smoothly from perfect to statistical channel
information [18, 19]. Dynamic CSIT is applicable to all Gaussian random channels.

In characterizing channel information, the thesis also considers another CSIT model
for a channel with high K factor. The K factor measures the ratio of power in the fixed
and the random parts of the channel. For this high-K model, the channel amplitude is
known perfectly at the transmitter, but the phase is known only in distribution. This
model is fundamentally different from dynamic CSIT and can be applied, for example, to

channels with a direct line-of-sight between the transmitter and the receiver.

1.4.2 Channel capacity and optimal input with CSIT

The second contribution consists of two parts: asymptotic analyses of the capacity gains
and the optimal input given dynamic CSIT, and a numerical convex optimization program
to find the capacity. Using function analysis and random matrix theory, the analyses in
the first part show that dynamic CSIT often multiplicatively increases the capacity at
low SNRs for all MIMO systems. It can additively increase the capacity at high SNRs
for systems with more transmit than receive antennas [20, 21]. The optimal input also
depends on the SNR. At low SNRs, it typically becomes single-mode beamforming on
the dominant eigen-mode of the channel correlation matrix. At high SNRs, the optimal
input differs across antenna configurations. For systems with equal or fewer transmit than
receive antennas, it approaches equi-power. With more transmit than receive antennas,
however, the optimal input is highly dependent on the CSIT and can drop modes for
channels with a strong mean or strongly correlated transmit antennas [20].

In the second part, optimizing for the channel capacity given a CSIT is a stochastic

convex problem. While convexity allows efficient implementations, the stochastic nature
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complicates the problem. Efficient techniques to calculate the gradient, Hessian, and
function values required for the optimization are specified [22]. The program is then
used to study MIMO capacity with dynamic CSIT and to evaluate a simple capacity
lower-bound, derived using the Jensen-optimal input. The bound is tight at all SNRs for

systems with equal or fewer transmit than receive antennas, and at low SNRs for others.

1.4.3 Precoding designs exploiting CSIT

The third contribution involves designing linear precoders to exploit CSIT, using convex
analysis and matrix algebra. The thesis proposes analytical precoder designs for two CSIT
models. The first design exploits dynamic CSIT in the form of a known channel mean
and a known transmit covariance. Design criteria are characterized based on fundamental
and practical measures. For the fundamental measure, the precoder aims to maximize
the capacity of a system with a given input code. The design is then generalized for other
criteria with stochastic objective functions [19]. For the practical measure, a precoder
operates in a system with a space-time block code and aims to minimize the pair-wise
codeword error probability [23]. This precoder is designed using a dynamic water-filling
algorithm, in which both the precoding beam directions and power allocation evolve with
water-filling iterations. Depending on the CSIT quality, these precoders achieve a range

of significant and robust SNR gains [18, 19].

Another design is for a channel with CSIT as the channel amplitude and the phase
distribution. This CSIT typically applies to a channel with high K-factor. A channel with
2 transmit and 1 receive antenna is studied specifically. The capacity-optimal transmission
scheme is simple single-mode beamforming on the mean of the channel phase-shift, with
variable antenna power allocation, depending on the phase knowledge [24]. When the
phase is perfectly known, the scheme converges to maximum-ratio-combining transmit
beamforming. When the phase is completely unknown, the scheme reduces to single

antenna transmission.
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1.5 Thesis outline

This thesis consists of 4 main chapters. These chapters follow the contributions outlined
above, with the third contribution discussed in two chapters. A brief outline of each

chapter is as follows.

Chapter 2 discusses the wireless channel characteristics and modeling, MIMO parame-
ters, and techniques for acquiring channel information at the transmitter. It then
establishes models of transmit channel side-information, including dynamic CSIT

and a variable-phase model for high-K channels.

Chapter 3 focuses on the channel capacity with dynamic CSIT. The chapter first analyzes
asymptotic capacity gains from dynamic CSIT and the optimal input at low and
high SNRs. Results are established separately for systems with more transmit than
receive antennas, and with fewer or equal. The chapter then establishes a convex
optimization program to find the channel capacity. This program is used to study
effects on the capacity of antenna configurations, the CSIT quality, and the K

factor, and to assess a simple, analytical capacity lower-bound.

Chapter 4 proposes precoding designs to exploit dynamic CSIT. Two design criteria
are studied: the pair-wise error probability (PEP) and the system capacity. The
chapter establishes a PEP-optimal precoder for a system with a space-time block
code, distinguishing between orthogonal and non-orthogonal codes. This precoder
is then analyzed in terms of the precoding gain, asymptotic behaviors, and special
cases. The chapter also briefly discusses other precoding designs based on the system
capacity and generalizes for stochastic objective functions involving an expectation

without a closed-form. Comparative precoding performance are discussed.

Chapter 5 examines the capacity-optimal transmission scheme with high-K variable-
phase CSIT in a 2 x 1 system. The optimal scheme is simple beamforming, which
is established in terms of the signal phase and amplitude separately. The chapter
then discusses benefits of this CSIT, including the capacity gain and the simple

transmission scheme.



12 CHAPTER 1. INTRODUCTION

The last chapter, Chapter 6, provides the conclusion. This chapter summarizes the
main results of the thesis, discusses the deployment of precoding in emerging wireless

standards, and outlines future research directions.



Chapter 2

TRANSMIT CHANNEL SIDE
INFORMATION MODELS

The wireless channel is a multipath time-varying channel. The multiple paths arise from
signals reflecting off multiple random scatterers in the propagation environment. These
paths combine sometimes constructively and sometimes destructively, creating a channel
with multi-tap impulse response, in which each tap has a random phase and a time-varying
amplitude. The wireless channel is therefore often characterized statistically. The chan-
nel amplitude fluctuation is called fading, which occurs in both the time and frequency
domains. This chapter first establishes a model for the multipath fading channel, then

focuses on the frequency-flat case with single response tap.

Multiple antennas bring an additional spatial dimension. Each tap in the MIMO
channel is often represented as a matrix, containing multiple elements from the pairs
of transmit and receive antennas. These spatial elements can have different statistical
parameters. Their statistics characterize antenna correlation, channel mean, and spatial-
temporal auto-correlations. Spatial channel information, either instantaneous or statis-
tical, can bring significant improvement in system performance, such as increasing the

transmission rate and enhancing reliability.

Due to random fading, acquiring wireless channel information can be difficult. Chan-

nel acquisition at the receiver is usually aided by embedded pilots and therefore produces

13
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accurate information. Acquisition at the transmitter, however, has to rely on channel
measurements at a receiver, based on reciprocity or feedback. Both methods induce a
delay, causing potential loss in information accuracy. Assuming perfect channel knowl-
edge at the receiver, the chapter discusses transmit channel acquisition and characterizes

types of channel side information at the transmitter (CSIT).

This chapter introduces two spatial CSIT models. Dynamic CSIT includes a channel
estimate with known error covariance, based on an initial channel measurement and the
channel temporal and spatial statistics. This model applies to Gaussian random channels,
including both Rayleigh and Rician fading, and covers smoothly from statistical to perfect
channel knowledge. High-K variable-phase CSIT includes the channel amplitude and the
distribution of the channel phase-shift, applied specifically to 2 x 1 channels, typically
with a line-of-sight propagation path. These two models form the foundation for signal
design and system analysis in the subsequent chapters.

The chapter is organized as follows. The next section discusses the multipath fading
channel characteristics and establishes statistical channel models. Section 2.2 examines
the spatial dimension in MIMO and corresponding channel parameters. Transmit channel
acquisition principles and techniques are discussed in Section 2.3. The last two sections

present the two CSIT models, dynamic and high-K variable-phase, respectively.

2.1 The wireless channel

A wireless channel is created by wave propagation through multiple paths, arisen from
scattering, reflection, refraction, or diffraction of the radiated energy off objects in the
environment. The channel is often characterized on two different scales: large and small.
Large scale propagation captures path loss and shadowing, which result from signal at-
tenuation with distance and random blockage by large objects, such as hills and buildings.
Small scale propagation captures the variation arising from signals of random multiple
paths adding constructively and destructively. Such random variations create fading: sig-
nal strength fluctuation over all time, frequency, and space dimensions. Signal processing

for wireless communication usually exploits the small scale channel variation, also called
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multipath fading. Hence, this section focuses on the small-scale channel characteristics

and models, leaving the large-scale characteristics to references such as [15].

2.1.1 Multipath fading channel characteristics

Multipath fading arises from the sometimes constructive and sometimes destructive ad-
dition of signals arriving from multiple paths. Such fluctuation is caused by the random
scatterers in the wireless environment; it is intensified in mobile communications with
moving transmitter or receiver (or both). This section constructs the multipath fading-
channel impulse-response and studies its characteristics. These will form the basis for

establishing channel models in the next section.

The channel impulse response

When an ideal impulse is transmitted over a multipath fading channel, there will be two
effects on the received signal. First, since different signal paths may have different lengths
and attenuation factors, the received signal may appear as a train of pulses with differ-
ent delays and magnitudes. Second, due to the random nature of the wireless channel,
the multipath is varying with time. Thus the number of arrived pulses, the delay be-
tween them, and their magnitudes may vary each time sending the impulse. The impulse

response of the channel captures both of these effects, and is constructed as follows [25].

Consider transmitting a modulated signal, generally represented as
q(t) = Re [x(t)ej%fct] (2.1)

where ¢ is the continuous time, f. is the carrier frequency, and xz(¢) is the lowpass
information-carrying signal. Assuming that there are multiple propagation paths indexed
by k, each with a propagation delay 7x(¢) and an attenuation factor oy (t), which are both

time-varying, the received bandpass signal without noise may be expressed as

K

r(t) = ar(t)q(t — (b)) (2.2)

k=1
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where K is the total number of paths. Substituting x(¢) in (2.1) yields
K ‘ ‘
r(t) = Re{ [Z ak(t)e_]27rch’“(t)x(t - Tk(t))} eﬂﬂf‘:t} .

k=1

The equivalent lowpass received signal therefore is

K
y(t) = ag(t)e 2 W (t — 7 (t)) .
k=1

The equivalent lowpass channel can then be described by the time-varying impulse re-

sponse [25]
K ‘ K
hir,t) = op(t)e 25 (t — (1)) = ag(t)e™ D5 (t — 7.(1)) (2.3)
k=1 k=1
where 0y(t) = —27 f.7(t) is a time-varying phase sequence.

The impulse response h(7,t) represents the response of the channel at time ¢ caused by
an impulse applied at time ¢ — 7. The channel is completely characterized by the number
of multipath components K and the path variables: amplitude ax(t), delay 7(t), and
phase 0 (t). These parameters change unpredictably with time and are often described
statistically. The received signal r(t) therefore is also random, and when there are a large
number of paths, the central limit theorem applies. This means r(¢) may be modeled as
a complex-valued Gaussian random process. Thus the channel impulse response h(7,t) is
a complex-valued Gaussian random process in the ¢ variable. The statistical models are

described in more detail in the next section.

Large dynamic changes in the transmitting medium are required for the amplitude
ai(t) to change sufficiently to cause a significant change in the received signal. On the
other hand, the phase 6 (t) will change by 27 radians whenever the delay 74 (¢) (or in effect
the path length) is changed by 1/ f., which is a small amount due to large carrier frequency.
Therefore 6y (t) can change quite rapidly with relatively small motions of the medium.
This time variation of the phases {0 (t)} is the primary cause of fading phenomena in a

multipath channel. The randomly time-varying phases {6y (t)} associated with the vectors
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{ay(t)e?*®} at times result in the received vectors adding constructively or destructively.

This adding causes amplitude variation in the received signal, termed signal fading.

Discrete-time channel model

For digital signal processing, the signal is processed in the sampled domain, hence it is con-
venient and necessary to represent the channel in discrete-time for analysis. The Nyquist
sampling frequency at twice the maximum signal bandwidth allows perfect reconstruction
of the continuous signal from its samples. In wireless communications, the received signal
sometimes needs to be sampled at a slightly higher frequency than Nyquist because of
possible bandwidth expansion through the channel. This work will assume that an appro-
priate sampling frequency has been chosen. A single time-sample of the channel response
at a specific delay is called a channel tap. Depending on the sampling resolution, the
number of distinguishable channel taps L is often smaller than the number of multipaths
(L < K). From (2.3), a discretized channel can be obtained as h[n; k|, representing the

channel response at the discrete time n caused by a unit sampled input at time n — k:

~
~

hin; k] = Zak[n]ee’“["]d[n —k] = th[n]é[n — k], (2.4)
k=1 k=1
where hy[n] = ay[n]e? [ is the k*" channel response tap, in which a[n] and 6;[n] are the

composite tap amplitude and phase respectively.

Temporal selectivity

A wireless channel can be selective, characterized by a varying channel response, in both
the time and frequency domains. The impulse response (2.4) can be used to describe
the channel in these domains. The time dimension n relates to the channel temporal
selectivity, while the delay dimension k captures the spectral selectivity.

Figure 2.1 provides an example of channel temporal selectivity for two scalar wireless
links between two distinct pairs of transmit and receive antennas. Not only these channel
amplitudes fluctuate over time, they can do so independently, given sufficient antenna

spacing.
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Figure 2.1: Amplitude of the temporal channel response of two different scalar wireless
links.

Temporal selectivity is caused by motion of the transmitter, the receiver, or the scat-
terers in the channel. These motions cause a transmitted single tone to be spread in
frequency at the receiver. This effect can be captured in the power spectrum of the
channel taps. To simplify the derivation, assume the taps are stationary and statistically

independent. The temporal auto-correlation of the k™ tap can then be obtained as
prm] = E [hg[n]hg[n +m]"] (25)

which depends only on the time difference m but not the absolute time (here (.)* denotes
complex conjugation). The tap power spectral response is the Fourier transform of this

auto-correlation

Sk(f) = pelmle 7>

The frequency range over which Si(f) is non-zero indicates the Doppler spread of tap k.
The maximum frequency spread among all taps is the channel Doppler spread f;. The
temporal auto-correlation function (2.5), which specifies how fast the channel decorrelates
with time, in turn can be expressed in terms of the time interval and the Doppler spread.
A popular model for all taps is Clark’s spectrum (popularized by Jake [14]), which assumes

uniformly distributed scatterers on a circle around the antenna,

plm] = Jo(2m famA) , (2.6)
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where Jy is the zero™ order Bessel function of the first kind, and A; is the sampling
interval. For other propagation environments, the temporal auto-correlation is often

obtained empirically.

Higher mobility in a system commonly causes larger Doppler spread and faster chan-
nel time variation. In other words, larger Doppler is associated with higher temporal
selectivity. A measure of the temporal selectivity is the channel coherence time, defined
as the time interval over which the channel remains strongly correlated. The shorter the
coherence time, the faster the channel changes with time. Since the coherence time is a

statistically defined quantity, an approximate relation to the Doppler is
T.=—. (2.7)

In some texts, there exists a constant such as 2, 4, or 8 in front of f; in this relation;
but there no single agreed-number. The important property is the inverse-proportionality

between T, and fy.

Spectral selectivity

Spectral selectivity, on the other hand, is caused by the presence of multipath, or multiple
channel taps indexed by k. It can be captured in the channel frequency response, by taking

the Fourier transform of the channel taps as
Hy,(f) = hgln]e 727/
n
The channel frequency response is the sum of the phase-shifted response of each tap
H(f) = H(f)e”* ™" (2.8)
k

Because of these frequency-dependent phase shifts, this sum varies with frequency, causing
selectivity. The more taps or equivalently longer multipath delays, the more frequency

selective the channel becomes. An indicator of this selectivity is the delay spread, defined
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as the range of multipath spread in the channel
Ty = Tmax — Tmin » (29)

where Tyax and Ty are the maximum and minimum multipath delays, respectively. The

channel coherence bandwidth B, is accordingly defined as

B, = (2.10)

1
T,
B, indicates approximately the frequency separation at which the channel behaves in-
dependently. In other words, two transmitted single tones separated by the channel
coherence bandwidth or more will be affected by the channel in significantly different

ways.

2.1.2 Statistical channel models

Because of the often unpredictable time-varying nature of a wireless channel, the channel
is modeled as a random process. The channel at a single time instance therefore is a
random variable. Consider a single channel tap hg[n| of the channel at time n from (2.4),

this tap is contributed by a number of multipaths as
Ly
hiln] = ak[n]ejo’“["} = Zai[n]eﬁ"[”} ,
=1

where «;[n] and 6;[n] are the amplitude and phase of path ¢ respectively, and Ly is the
total number of contributing paths. The phases of these paths vary rapidly with time
and are often modeled as independent uniform random variables in [0, 27]. The sum of
such random-phase components, in which no path has the magnitude dominant compared
with all others, can be well approximated as a Gaussian random variable with zero mean
[26]. The Gaussian statistics of hi[n] can also be inferred from applying the central limit

theorem to this summation of multiple and statistically similar paths.
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Often, the complex channel tap is expressed in terms of its real and imaginary parts
hi[n] = hirln] + jhri(n] (2.11)

where both parts are Gaussian random variables with zero mean and equal variance.
The channel variance represents the average power gain in the channel. It can be shown
then, that the tap amplitude ax[n] has the Rayleigh distribution and the phase uniform
in [0, 2] (see [27]). The Rayleigh distribution has been verified empirically to be a good
fit for many channels, especially when there are many scatterers in the environment and
no direct line-of-sight between the transmitter and the receiver. It also models well the
fast fading channel components.

When there is a direct line-of-sight or a cluster of strong paths, the channel may have
a non-zero mean (a DC component). The channel then is often modeled as having Rician
statistics. The Rician distribution arises from the phase of a constant phasor perturbed
by additive, random zero-mean complex Gaussian noise with equal variance on the real
and imaginary parts [28]. The channel line-of-sight in this case acts as the constant phasor
while the other multipaths contribute to the zero-mean Gaussian part. In a multi-tap
channel, the line-of-sight usually affects only one tap. The real and imaginary parts of
that tap (2.11) are now non-zero mean Gaussian random variables; their variances are
equal but the means need not be. Other channel taps are still zero-mean.

There are yet other statistical models for wireless channels, such as Nakagami, Suzuki,
Weibull [26], in addition to empirical models. While these models may be more accurate
for some channels, they are also more complicated to work with because of a larger number
of parameters. Since the Rayleigh and Rician models can well represent a majority of
channels to sufficient detail, subsequent analyses will mainly use these models.

The variance of a zero-mean channel tap represents its power gain. The power gain
of a multi-tap channel is captured in the power-delay profile. A common model for this
profile is the exponential model, in which the tap power follows an exponential function

with the exponent as the negative of the tap delay

E [|hi[n]?] = poe ™7™,
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where py and 1y are constants. For analysis, the power gain of a scalar channel between a
single transmit and a single receive antennas is often normalized to 1, counting all taps.
For a frequency-flat channel with single time-response tap, that tap is normalized to have
a unit variance.

Another parameter is the distribution of the path delay sequence, which has been
modeled less extensively. Existing models include Poison distribution, Gilbert’s burst
noise, and a pseudo-Markov model [26]. The analysis in this thesis, however, will fo-
cus solely on the frequency-flat channel; hence this parameter has no affect and will be

omitted.

2.2 MIMO channel parameters

The MIMO wireless channel is created by using multiple antennas at both the transmitter
and the receiver. It generalizes the special cases of having a single antenna at only one
side: multiple input single output (MISO), and single input multiple output (SIMO). In
addition to spanning the temporal and spectral dimensions, a MIMO channel exhibits
a new spatial dimension across the antennas. The channel contains multiple elements
among the antennas and is often represented in a matrix form. These elements can
correlate and can have different mean (line-of-sight) values. Their composite temporal

and spectral responses are also more complex than the scalar case.

2.2.1 The spatial dimension

For simplicity, let’s first examine the frequency-flat MIMO channel. The channel has only
a single tap. This tap, however, contains multiple elements between all pairs of transmit-
receive antennas. In a system with N transmit and M receive antennas, the channel can

be represented as a matrix H of size M x N

hi1 hig --- hin

H-= ' : (2.12)

havit o hvz - hun
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hg = Oéh1€j¢

Figure 2.2: Single-path spatial propagation model.

in which h;; is the scalar channel from transmit antenna j to receive antenna i. For
brevity, the time-dependent index [n] has been omitted.

Each channel element h;; can have different amplitude and phase, caused by spatial
selectivity. The channels at the same time, same frequency but at different locations
can experience different fading. To understand the underlying spatial effect, consider a
signal arriving at a two-antenna array from a single direction. The corresponding channel,
depicted in Figure 2.2, contains two propagation paths to the two antennas, h; and ha,

which differ by a gain ratio o and a phase shift ¢ as
hy = ae’®hy . (2.13)

The difference in antenna gains (when « # 1) is caused by the antenna array structure
and the local scattering from the mounting structure (walls, rooftops) near the antennas.
Although dependent on the angle of signal arrival, o is much less sensitive to its changes
than is the phase shift ¢. The phase shift results from the difference in distances that
the wave propagates to the antennas. It depends on the angle of arrival 6, the distance d
between the two antennas, and the carrier frequency f., or the wavelength A, equivalently,
as

= 27r)\i sinf . (2.14)

C
Depending on the antenna distance relative to the wavelength, this phase shift can be

highly variable in response to a small change in the angle of arrival . For example,
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at a distance of tens of the wavelength, if 6 is uniformly distributed in [—7/3,7/3], the
distribution of ¢ looks almost uniform in [—m,7]. A similar single-path model applies
to multiple transmit-antenna channels, in which 6 is the angle of departure. A typical
MIMO channel has multiple propagation paths from multiple directions. The multipath
makes the phase shifts between the channel elements even more sensitive to changes in
the angles of arrival or departure, causing the spatial selectivity in the channel.

A frequency-selective MIMO channel contains multiple matrix taps at different de-
lays. Elements of different taps are often assumed to be independent. The tap-delay
scalar channel between every transmit-receive antenna pair can have the same power-
delay profile, except any difference in the non-zero-mean tap of a Rician channel.

Similar to a scalar channel, each element h;; in a MIMO channel can be modeled as
a complex Gaussian random process. These elements, however, can correlate and have

different means. Decompose the channel (2.12) into a fixed part and a variable part as
H=H, +H, (2.15)

where H,, is the complex channel mean, and H is a zero-mean complex Gaussian random

matrix.

2.2.2 Channel covariance and antenna correlations

The channel covariance captures the spatial correlation among all the transmit and receive

antennas. It is defined among all M N channel elements as a M N x M N matrix
Ro=E [ﬁﬁ*} , (2.16)

where h = vec (I:I>, and (.)* denotes a conjugate transpose. Ry is a positive semi-
definite Hermitian matrix. Its diagonal elements represent the power gain of the M N
scalar channels, and the off-diagonal elements are the cross-coupling between these scalar
channels.

The covariance Ry is often assumed to have a simplified, separable Kronecker structure

[29]. The Kronecker model assumes that the covariance of the scalar channels seen from
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all N transmit antennas to a single receive antenna (corresponding to a row of H) is the
same for any receive antenna (any row) and equals to Ry (IV x N). Let 171? be row i of

H, then

for any 4. Similarly, the covariance of the scalar channels seen from a single transmit
antenna to all M receive antennas (corresponding to a column of H) is assumed to be the
same for any transmit antenna (any column) and equals to R, (M x M). That is, let flj

be column j of H, then

for any j. Both covariance matrices R; and R, are complex Hermitian positive semi-

definite. The channel covariance can now be decomposed as
Ry =R’ &R, . (2.17)

where ® denotes the Kronecker product [30]. The channel (2.15) can then be written as

H = H,, + RY/?H,R}? (2.18)

where H,, is a M x N matrix with zero-mean unit-variance i.i.d complex Gaussian entries.
Here Rt1 /% is the unique square-root of Ry, such that Ri / zRi 2 R;; similarly for R%/ 2,

The Kronecker correlation model has been experimentally verified in indoor environ-
ments for up to 3 x 3 antenna configurations [31, 32], and in outdoor environments for up
to 8 x 8 configurations [33]. Other more general covariance structures have been proposed
in the literature [34, 35], in which the transmit covariances (R;) corresponding to different

reference receive antennas are assumed to have the same eigenvectors, but not necessarily

the same eigenvalues; similarly for R,.

2.2.3 Channel mean and the Rician K factor

The channel mean is the fixed component of the channel, usually corresponding to a line-

of-sight propagation path or a cluster of strong paths. The mean of a MIMO channel is
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a complex matrix H,, of size M x N obtained as
H,, = EFH]. (2.19)

The elements of the mean can have different amplitudes and arbitrary phase, caused by
the spatial effect analyzed in Section 2.2.1. The strength of a chann