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Abstract– We study the problem of exploiting MIMO wireless
transmitter channel knowledge in form of the channel mean and
transmit correlation from a coding perspective. A linear channel pre-
coder is designed to capture the channel information, which is used
in concatenation with an orthogonal space-time block code. Based
on the pair-wise error probability criterion, the optimal precoding
matrix is derived analytically. Depending on the channel mean and
correlation, and the SNR, the solution may require mode-dropping,
which resembles the water-filling principle. The difference here is
that both the “water level” and the mode directions change with each
water-fill iteration, hence it is termed dynamic water-filling. Effi-
cient binary search algorithms are proposed to carry out the dynamic
water-filling process in solving for the optimal precoder. Numerical
examples show that significant gain can be obtained using this linear
channel precoder.

1. INTRODUCTION

Since the seminal studies by Tarokh et.al [1, 2], there has been a
wealth of space-time code (STC) designs to realize the potential
performance gain in MIMO wireless channels. Due to the random
nature of a wireless link, a common assumption for STC design is
that the transmitter does not have any knowledge of the channel.
The channel is therefore assumed to be Rayleigh fading, where
the coefficients are i.i.d. zero-mean complex Gaussian random
variables.

In practice, MIMO wireless channels may exhibit some con-
ditions and statistics that are different from the common channel
model above. For example, there can be a correlation between the
transmit antennas [3], the channel can exhibit a Rician non-zero
mean [4], or have a high K factor. While exact channel knowledge
is difficult to get at the transmitter, some partial channel informa-
tion can usually be obtained. This channel information can be
in various forms, such as channel statistics (mean, correlation or
both), channel estimates with error, or channel parameters (con-
dition number, K factor, SNR...). Transmitter channel knowledge
in a MIMO wireless system has been shown to provide valuable
gain in system performance, in term of both mutual information
[5, 8] and coding gain [6, 7], and at the same time it can help to
significantly simplify the system complexity.

To exploit the channel information at the transmitter in a MIMO
system, the information can either be incorporated into the design
of a new STC, or it can be used to design a channel precoder sep-
arately from the STC. The role of a channel precoder is to capture
transmitter channel knowledge, such that the same STC that was
designed for i.i.d channels can be used for other channel condi-
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tions with a precoder. Hence precoder provides the flexibility of
adapting to various channel knowledge conditions without having
to change the STC. In this study, we examine the precoder design
scenario, where a linear precoder is used in concatenation with a
space-time block code. Linear precoder can be viewed as a matrix
or multi-modal beamformer, where the modes (or “beam direc-
tions”) are the left singular vectors of the precoder matrix, and the
powers on the modes are the square singular values.

In this communication, we study a model of transmitter chan-
nel knowledge that includes both a non-zero channel mean and a
transmit correlation matrix. Channel information of only trans-
mit correlation has been studied in [7], where the optimal pre-
coder matrix has mode directions given by the eigenvectors of the
correlation matrix, and the mode powers are obtained by water-
filling over the eigenvalues of the correlation matrix. The inclu-
sion of the channel mean matrix changes the solution significantly
in the sense that, now the mode directions depend on both the
mean and correlation matrices and the SNR, and they can not be
pre-determined. If the channel condition and the operating SNR
are such that mode-dropping is required, the mode directions and
powers change dynamically through each “water-fill” iteration.
This gives raise to the term “dynamic water-filling”.

The paper is organized as follows: In the next Section we set
up the channel and signal models, and discuss the pair-wise error
probability (PEP) criterion. Section 3 introduces the precoder and
the corresponding optimization problem. In section 4, we solve
for the precoder solution in both cases of full-rank precoder (no
mode dropping) and precoder with mode dropping, and explain
the concept of dynamic water-filling. Section 5 presents some nu-
merical performance examples which illustrate the gain obtained
by channel precoding. We give some concluding remarks in Sec-
tion 6.

2. MODEL AND PEP CRITERION

2.1. Channel and signal model

We consider a MIMO wireless communication system with N
transmit and M receive antennas. The channel is frequency flat
quasi-static fading which is represented by matrix H of size M ×
N . Assuming a non-zero mean channel with transmit antenna
correlation, the channel matrix can be written in the form

H = Hm + HwR1/2
t , (1)

where Hm is the channel mean, Rt is the transmit correlation
matrix, and Hw has elements which are independent zero-mean
complex Gaussian random variables with unit variance, i.e. Hw ∈
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N (0, I). We assume that the transmit correlation matrix Rt is full
rank and therefore is invertible.

The receiver is assumed to know the channel perfectly (i.e. it
knows the channel realization H), whereas the transmitter only
knows the channel mean Hm and transmit correlation Rt.

Let X be the transmit signal block over T symbols, then the
receive signal block is

Y = HX + V ,

where V ∈ N (0, Iσ2) is the additive complex white Gaussian
noise with σ2 being the noise power. X can be a codeblock or a
signaling block over which we perform detection. Note that there
is no channel error correction code involved in the system under
study, and we are interested in the performance in term of the
uncoded block error rate.

2.2. PEP Criterion

We consider the pair-wise error probability (PEP), which is the
probability that a transmitted signal block X is erroneously de-
coded as a signal block X̂. While this is not the system block
error rate, it is a measurement that is strongly related to the sys-
tem performance.

We assume ML decoder using the Euclidean distance decod-
ing metric

X̂ = arg min
X∈X

||Y − HX||2F .

The subscript F here denotes the Frobenius norm. Applying the
Chernoff bound, similar to [1], the PEP can be upper bounded by

P (X → X̂) ≤ exp

(
−||H(X − X̂)||2F

4σ2

)
. (2)

Taking the expectation of (2) over the channel statistics, we
obtain the following bound on the average PEP

P̄e ≤ exp
[
tr(HmW−1H∗

m)
]

det(W)M
det(Rt)Mexp

[−tr(HmR−1
t H∗

m)
]
,

(3)
where

W = Rt
∆∆∗

4σ2
Rt + Rt (4)

and ∆ = X − X̂ is the codeword difference matrix. The su-
perscript (.)∗ denotes the matrix conjugate transpose operation.
Since the exact error expression is very complex, we will aim to
minimize this upper bound on the average PEP (3). It is equiv-
alent to minimizing the logarithm of the bound, and by ignoring
the constant terms, this leads to the following objective function

J(W) = tr(HmW−1H∗
m) − M log det(W). (5)

This objective function is matrix convex in W.

3. LINEAR CHANNEL PRECODING IN SPACE-TIME
CODED SYSTEMS

3.1. General linear precoding structure

We study a MIMO system where there have been a space-time
block code (STBC) with an appropriate code rate in place to cap-
ture diversity in the channel. The STBC is designed assuming no
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Fig. 1. MIMO channel precoding in OSTBC systems.

knowledge of the channel at the transmitter, i.e. it targets channels
with zero-mean i.i.d. complex Gaussian fading coefficients. To
capture the channel information at the transmitter, we use a linear
precoding matrix F , connected in concatenation with the STBC
as depicted in Figure 1. This gives the flexibility of adapting to
various transmit channel knowledge conditions without changing
the STBC that is already implemented. To maintain the total av-
erage transmit power, the precoding matrix needs to satisfy the
power constraint

tr(FF∗) = 1. (6)

Let C be the codeblock in the STBC, the transmit signal block
X then has the following structure

X = FC.

The codeword difference matrix becomes

∆ = X − X̂ = F(C − Ĉ).

In general, the codeword difference matrix depends on both the
precoder and the specific codeword pair.

3.2. Linear precoder with OSTBC

In this analysis we will assume the use of orthogonal STBC [2]
specifically. Due to orthogonality, we have

(C − Ĉ)(C − Ĉ)∗ = λP I,

where P is the average total transmit power and λ represents the
codeword distance which depends on the specific pair of code-
words.

Let λ0 be the minimum distance over all pairs of codewords.
The minimum codeword distance is the term that dominates the er-
ror probability exponent and hence is a reasonable indicator to the
system performance. We aim to minimize this worst case average
pair-wise error probability. In the later simulations, it is verified
that the error bound obtained via minimizing the worst case aver-
age PEP has an almost constant gap to the actual error rate curve,
hence validating the choice for the optimization objective.

Using the minimum distance codeword pair, then ∆∆∗ =
λ0PFF∗, and the expression for W in (4) becomes a function
of the precoding matrix only

W =
λ0P

4σ2
RtFF∗Rt + Rt . (7)

With the objective function (5) and the power constraint on the
precoder (6), we arrive at the following convex optimization prob-
lem

min
W

J = tr(HmW−1H∗
m) − M log det(W) (8)

s.t. tr(R−1
t WR−1

t − R−1
t ) = 1

4λ0ρ

where ρ = P/σ2 is the SNR. Note that this problem in term of F
is non-convex, but by the change of variable to W, the problem
becomes convex and can be solved analytically.
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4. OPTIMAL LINEAR PRECODER

Problem (8) can be solved analytically using the Lagrange multi-
plier technique [10]. Form the Lagrangian function and differen-
tiate with respect to W to get

−W−1H∗
mHmW−1 − MW−1 + νR−2

t = 0 ,

where ν is the Lagrange multiplier. Define

Ψ = M2IN + 4νR−1
t H∗

mHmR−1
t , (9)

then the solution for W is given as

W =
1
2ν

Rt

(
MIN + Ψ

1
2

)
Rt .

We will need to find the Lagrange multiplier ν so that the precoder
satisfies the transmit power constraint (6).

There is another implicit constraint on the positive semi-definite
(PSD) property of FF∗, which translates to the following condi-
tion on W

R−1
t WR−1

t − R−1
t = FF∗ ≥ 0.

We will first solve for ν without taking into account this PSD
constraint. If the solution does not satisfy the constraint, mode-
droppings are then required, which means that the precoder will
not distribute power in certain directions due to weak channel con-
dition. This mode-dropping idea is analogous to the water-filling
process but the actual implementation is different and will be dis-
cussed in the following sections.

4.1. Full-rank precoder solution

In this section, we solve for the Lagrange multiplier ν using the
power constraint (6), which is equivalent to

tr
( 1

2ν
(MIN + Ψ

1
2 ) − R−1

t

)
=

1
4
λ0ρ . (10)

Let λi (i = 1 . . . N ) be the eigenvalues of R−1
t H∗

mHmR−1
t , and

let β = 2[tr(R−1
t ) + λ0ρ/4], the above equation becomes

MN +
N∑

i=1

√
M2 + 4νλi = βν . (11)

In the general case, this equation does not appear to have a close-
form solution. However, solving for ν can be done efficiently
using binary search, which we call the inner algorithm.

Inner algorithm for solving ν

The following lower and upper bounds on ν are established

νlower =
MN

β
, νupper =

1
β2

(
4N

N∑
i=1

λi + 2βMN
)

.

The lower bound is obtained directly from (11) by ignoring the
summation of square-roots term, while the upper bound is ob-
tained from applying the Cauchy-Schwartz inequality to the sum-
mation term. Binary numerical search can then be carried out to
find solution for (11) between these bounds up to a desired preci-
sion. The number of iterations depends on the problem parame-
ters, but usually the convergence happens very fast since this is an
one dimensional binary search.

Precoder solution

Once ν is found, we can form the matrix Ψ as in (9) and establish
the precoding matrix product as

FF∗ =
1
2ν

(MIN + Ψ
1
2 ) − R−1

t . (12)

From this product expression, an optimal precoder can be derived.
The optimal precoder is not unique. In term of singular value
decomposition of the precoder matrix, the left singular vectors
and its singular values are the eigenvectors and square root of the
eigenvalues of FF∗ respectively. The right singular vectors how-
ever can be any unitary matrix. This linear precoder represents
the idea of a multi-modal beamformer, where the beam directions
(modes) are the eigenvectors of FF∗, and the power on each mode
is the corresponding eigenvalue of FF∗.

4.2. Precoder solution with mode-dropping

For expression (12) to be a valid precoding solution, it has to be
positive semidefinite (PSD). If the SNR is weak such that this ex-
pression is not PSD, we need to drop the weakest mode of FF∗

and solve for ν again. This is analogous to the water-filling pro-
cess. Now the total power will be distributed on the N − 1 largest
eigenvalues of FF∗ and the power constraint (10) changes to

N∑
i=2

λi

( 1
2ν

(MIN + Ψ1/2) − R−1
t

)
=

1
4
λ0ρ , (13)

where λi(·) is the ith eigenvalue of the matrix in the brackets,
sorted in increasing order (λ1 ≤ · · · ≤ λN ). The sum of any k
largest eigenvalues of a Hermitian matrix is convex. Again the
above equation does not have a close form solution for ν. We
design an algorithm to numerically solve for ν efficiently in this
case based on two-fold binary search, which is termed the outer
algorithm.

Outer algorithm for solving ν

There is no explicit function that relates the individual eigenvalue
in the expression in (13) to ν. Fortunately, again we can derive
upper bound and lower bound values on ν and then use binary
search to find the solution efficiently. Using inequalities on eigen-
values of a sum of Hermitian matrices [9], we obtain the following
bounds on the left-hand-side expression of (13)

fupper =
M(N − k)

2ν
+

N∑
i=k+1

√
M2 + 4νλi

2ν
−

N−k∑
i=1

λi(R
−1
t )

flower =
M(N − k)

2ν
+

N∑
i=k+1

√
M2 + 4νλi

2ν
+ kλ1(R

−1
t ) − tr(R−1

t )

Here the bounds are given for the general case when k modes
are dropped. Equating each expression to ρλ0/4 and solve for ν,
using the inner algorithm mentioned in the previous section. The
solutions of these two equations then become the upper bound
and lower bound on the solution for ν in (13). Noting that the
sum of eigenvalues is monotonous in ν, a binary search can then
be carried out to solve equation (13) efficiently up to a desired
numerical precision.
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Dynamic water-filling

The mode-dropping process above is similar to the water-filling
process in that at each outer iteration, a mode is dropped (the
weakest amongst the active modes) and the total transmit power
is redistributed over the rest of the modes. There is however a sig-
nificant difference between this and the conventional water-filling
process. In conventional water-filling process, the mode direc-
tions (i.e. the eigenvectors of FF∗) remain the same over the
water-fill iterations, and only the water level changes after each
iteration. In our problem, the mode directions also change at each
iteration. This is due to the interaction between the channel mean
and transmit correlation matrices. To see this effect more clearly,
rewrite the expression for FF∗ in the following form

FF∗ =
M

2ν
IN +

(
1
2ν

Ψ(ν)
1
2 − R−1

t

)
, (14)

where the notation Ψ(ν) illustrates the dependence of Ψ on ν.
The total power (which is normalized to one in this case) is dis-
tributed over the positive eigenvalues of FF∗, and all the other
eigenvalues are set to zero. In expression (14), the “water-level”
is given by M/2ν and the mode directions are determined by
the eigenvectors of the expression in the bracket. Thus when ν
changes at each iteration, both the water-level and the mode di-
rections change. For this reason, we call this a “dynamic water-
filling” process.

5. NUMERICAL RESULTS

In this section we present examples of some system performance
via simulation. The first system is a 2× 2 MIMO using Alamouti
SBTC. The channel mean and correlation matrices are generated
arbitrarily and the optimal precoder is obtained using the proce-
dure outlined in the previous section. The system performance
with and without the channel precoding is shown in Figure 2 for
QPSK modulation. It shows a performance gain in the system
using precoder. The exact precoding gain depends on the channel
parameters and the error rate of interest (or the operating SNR). At
the block error rate of 10% for example, the gain is 2.5dB. At high
SNRs, the gain gets smaller. The same trend has been observed
on capacity gain of transmitter channel knowledge, which shows
that the advantage of having channel knowledge at the transmitter
diminishes at high SNRs for system with equal number of trans-
mit and receive antennas [5]. Also shown are the worst-case PEP
error bound that was used as the optimization criterion. It can be
seen that the bounds track the actual performance closely with an
almost constant gap, hence validating the optimization objective.

In Figure 3, we shows the error performance of a 4×1 system
using rate 1 OSTBC with BPSK modulation [2]. The precoding
gain is larger than the previous 2×2 system in Figure 2. For exam-
ple, the gain at 10% block error rate is 4dB in this case. Generally
the precoding gain increases with a larger number of transmit an-
tennas.

Another point to mention here is that the gain of the pre-
coder over non-precoded systems, while depending on the oper-
ating SNR, also depends on the channel parameters, that is the
specific mean and transmit correlation matrices. Some channel
condition favors precoding (i.e. the precoder can achieve a large
performance gain) while for some others, the precoding gain is
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Fig. 2. Performance of a 2 × 2 system using Alamouti code and
QPSK modulation.
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Fig. 3. Performance of a 4 × 1 system using rate 1 OSTBC and
BPSK modulation.

less significant. There can be various factors contributing to this
effect, for example, how closely the eigenvectors of the channel
mean and transmit correlation matrices align. This is a subject of
further research.

6. CONCLUSION

We have derived analytically the optimal solution for a linear pre-
coder that exploits the channel mean and transmit correlation in-
formation at the transmitter. The optimal precoder is a function
of both the channel mean and transmit correlation matrices, and
the operating SNR. If no mode-dropping is required, the precoder
matrix is full rank and distributes power in all directions. The
calculation of the precoder matrix requires the computation of a
Lagrange multiplier, which can be found efficiently via a binary
search. When mode dropping is needed, a two-fold binary search
algorithm is proposed to calculate the Lagrange multiplier and ar-
rive at the precoder solution efficiently. The mode-dropping pro-
cess resembles the water-filling principle. The difference here is
that both the water-level and the mode directions change with each
iteration and hence, it is called dynamic water-filling. Examples
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of performance gain using the precoder are given via simulation
for 2× 2 and 4× 1 systems. It shows that significant gains can be
obtained by the precoder. The exact precoder gain depends on the
channel parameters and the operating SNR. The gain generally
increases with an increasing number of transmit and/or receive
antennas.
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