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Abstract– Transmit channel side information (CSIT) can improve
performance of MIMO wireless systems by means of precoding. More
complete and reliable CSIT provides more precoding gain. Instan-
taneous channel measurements provide the most potential gain,but
suffer from delay-induced error due to channel temporal variation.
Statistical channel knowledge provides less gain, but is reliable. In
this paper, we propose a framework combining a possibly outdated
channel measurement with the channel statistics – the mean and the
covariance – to create a dynamic CSIT form, as a function of a corre-
lation factor between the measurement and the current channel.The
CSIT consists of an estimate of the current channel and the associ-
ated estimation error covariance, which function effectively as the
channel mean and covariance. We apply a precoder design exploit-
ing these channel statistics to illustrate the achievable gain and the
robustness of the new CSIT framework.

1. INTRODUCTION

Exploiting transmit channel side information (CSIT) in MIMO
wireless to improve performance has recently been an activearea
of research. CSIT helps increase the channel capacity and im-
prove the system error performance. It has applications in areas
such as precoding, power control, and link adaptation.

CSIT can be obtained based on the reciprocity principle or
via feedback from the receiver. In both cases, there is usually a
delay between when the information is obtained and when it is
used at the transmitter. Such delay can affect the reliability of the
CSIT, depending on the CSIT form. Several forms exist, includ-
ing instantaneous channel measurements, channel statistics, and
channel parameters (such as theK factor and the condition num-
ber). We focus on instantaneous channel measurements and chan-
nel statistics information. An instantaneous channel measurement
possesses the most potential performance gain, but is sensitive to
channel variation due to the delay. In contrast, the channelstatis-
tics, including the channel mean and the covariance (or antenna
correlations), provide less gain, but are stable over much longer
periods of time and can be obtained reliably.

A number of earlier precoding designs have focused on ex-
ploiting the channel statistics alone, such as the transmitantenna
correlation [1], the channel mean [2], or both [3]. In addition,
the scheme in [2] uses posterior channel statistics given animper-
fect channel estimate, but without an explicit formulationof these
statistics. Fundamentally, more complete and reliable information
brings more performance gain, suggesting the combination of dif-
ferent forms of channel information.
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In this paper, we provide an explicit formulation of CSIT com-
bining a potentially outdated channel measurement with thechan-
nel statistics to create a robust CSIT form. The formulational-
lows evaluating the CSIT based on a temporal correlation fac-
tor ρ, which is a function of the delay and the channel Doppler
spread. Whenρ = 1, the CSIT is perfect; whenρ → 0, the
CSIT approaches the actual channel statistics. Specifically, the
new CSIT consists of an estimate of the channel at the transmit
time and the associated error covariance, which function effec-
tively as the channel mean and the covariance (for brevity, we will
refer to these parameters as the functional channel mean andthe
functional covariance), respectively. This framework enables ap-
plications of precoding schemes exploiting both the channel mean
and covariance, optimally utilizing the available transmit channel
information.

The rest of the paper is organized as follows. In Section 2, we
discuss the channel model and the effect of a delay on instanta-
neous CSIT and statistical CSIT. We construct the dynamic CSIT
framework in Section 3. We outline a precoding design based on
a pair-wise error probability criterion in Section 4. We then ap-
ply this design to the dynamic CSIT framework in Section 5 to
illustrate the range of the precoding gain, the value of the initial
channel measurement, and the robustness of the framework. Fi-
nally, we conclude in Section 6.

Notations: We use a boldface capital letter for a matrix, and
the corresponding lowercase letter for its vectorized version (for
example,h = vec(H)), obtained by vertically concatenating the
columns of the matrix. We use(.)∗ for conjugate transpose; and
E[.] for expectation.

2. CHANNEL MODEL AND CSIT

Consider a frequency flat, quasi-static block fading MIMO chan-
nel with N transmit andM receive antennas, modeled as a ran-
dom matrixH of sizeM×N . The channel is Gaussian distributed
with meanH̄ and covarianceR0, representing the Rician compo-
nent and the correlation among all transmit and receive antennas,
respectively. This model includes Rayleigh fading (H̄ = 0) as a
special case. The channelH can thus be decomposed as

H = H̄ + H̃ , (1)

whereH̃ is the zero-mean Gaussian component, and the channel
covarianceR0 of sizeMN × MN is then defined as

R0 = E[h̃h̃
∗], (2)

whereh̃ = vec(H̃). The channel statistics,̄H andR0, can be
obtained by averaging instantaneous channel measurementsover



tens of channel coherence times; they remain valid for a period of
tens to hundreds coherence time, during which, the channel can
be considered as stationary [4].

Channel side information at the transmitter, or CSIT, can be
obtained by using the reversed-channel information, relying on
the reciprocity principle, or by feedback from the receiver. Reci-
procity is usually applicable only in time-division-duplex systems,
due to stringent matching constraints in all dimensions (time, fre-
quency, and space); whereas feedback can be used in both time
and frequency division-duplex systems. In either case, there exists
a delay from when the channel information is obtained to whenit
is used by the transmitter, such as a scheduling or a feedbackde-
lay. This delay may affect the reliability of the CSIT obtained,
depending on the CSIT form.

Consider the channel statistics and instantaneous channelmea-
surements. Because of (short-term) stationarity, the channel statis-
tics remain unchanged for a relatively long time compared tothe
transmission intervals. Therefore, these statistics are not affected
by channel acquisition delay, and they become a reliable form of
CSIT. Instantaneous channel measurements, on the other hand, are
sensitive to the delay due to channel temporal variation, leading
to a potential mismatch between the measurement and the channel
at the time of use. In a well-designed system, this delay-induced
mismatch is the main source of irreducible channel estimation er-
rors. Thus, we assume that the initial measurements are accurate
and only focus on the delay-induced effect on measurement relia-
bility.

A more reliable and more complete form of CSIT provides
more gain in system capacity and performance. This principle
suggests combining both the channel statistics and instantaneous
measurements to create a CSIT framework robust to channel vari-
ation, while optimally capturing the potential gain.

3. A TRANSMIT CSI FRAMEWORK

Assume that the transmitter has an initial channel measurement
H0 at time 0, together with the channel statisticsH̄ andR0. We
aim to establish an estimate of the current channelHs at the trans-
mit time s. The channel measurement is correlated with the cur-
rent channel, captured by the channel auto-covariance

Rs = E[h̃0h̃
∗
s ] . (3)

Because of stationarity, the auto-covarianceRs depends only on
the time differences, but not on the absolute time; at a zero delay,
we haveR0 in (2). Again,Rs can be obtained by averaging op-
erations on channel measurements over several (tens of) channel
coherence times.

Given the channel measurementH0 and the statistics̄H, R0,
andRs, an estimate of the channel at times follows from MMSE
estimation theory [5] as

ĥs = E
[

hs|h0

]

= h̄ + R
∗
sR

−1

0

[

h0 − h̄
]

Re,s = cov
[

hs|h0

]

= R0 − R
∗
sR

−1

0
Rs ,

where ĥs = vec
(

Ĥs

)

is the channel estimate, andRe,s is the
estimation error covariance at times. These two quantities func-
tion effectively as the channel mean and the channel covariance,
constituting the new CSIT. A similar model was proposed in [6]

for estimating a scalar time-varying channel from a vector of out-
dated estimates. CSIT formulations conditioned on noisy channel
estimates were also studied in [7, 2].

The auto-covarianceRs captures both the channel temporal
correlation and the antenna correlation. We now assume thatthe
temporal correlation in a MIMO channel is homogeneous. In
other words, all the scalar channels between theN transmit and
theM receive antennas have the same temporal correlation func-
tion ρs. Similar assumptions have also been used in [8, 9]. We
can then separate the temporal correlation from the antennacor-
relation in the channel auto-covariance as

Rs = ρsR0 . (4)

The channel temporal correlationρs is a function of the Doppler
spreadfd and the delays. In the classical Jake’s model [10] for
example,ρs = J0(2πfds), whereJ0 is the zeroth order Bessel
function of the first kind. In general, we assume that−1 ≤ ρs ≤
1, andρs = 1 only at a zero delay (s = 0).

Using this simplified auto-covariance model, the channel esti-
mate and its error covariance become

Ĥs = ρsH0 + (1 − ρs) H̄ ,

Re,s =
(

1 − ρ2

s

)

R0 .
(5)

These functional channel statistics, or the new CSIT, can now be
simply characterized as a function ofρs and other stationary chan-
nel parameters.

A common antenna correlation model assumes a Kronecker
structure, representing separable transmit and receive antenna cor-
relations as

R0 = R
T
t ⊗ Rr , (6)

whereRt of sizeN × N andRr of sizeM × M are the trans-
mit and receive antenna correlations, respectively. This Kronecker
correlation model has been experimentally verified for indoor chan-
nels of up to3 × 3 antennas [11] and for outdoor of up to8 × 8
[12]. Using this model, the estimated channel has the functional
antenna correlations as

Rt,s =
(

1 − ρ2

s

)
1

2
Rt ,

Rr,s =
(

1 − ρ2

s

)
1

2
Rr ,

(7)

which again follow a Kronecker structure.
In the constructed CSIT models (5) and (7),ρs acts as a chan-

nel estimate quality dependent on the time delays. For a zero or
short delay,ρs is close to one; the estimate depends heavily on the
initial channel measurement, and the error covariance is small. As
the delay increases,ρs decreases in magnitude to zero, reducing
the impact of the initial measurement. The estimate then moves
toward the channel mean̄H, and the error covariance grows to-
ward the channel covarianceR0. Therefore, the estimate and its
error covariance (5) constitute a form of CSIT, ranging between
perfect channel knowledge (whenρ = 1) and the channel statis-
tics (whenρ = 0). By taking into account channel time variation,
this framework optimally captures the available channel informa-
tion and creates a dynamic CSIT model.

4. PRECODING ALGORITHM

We now apply the above CSIT framework to precoding. For this
application, we consider channels with a non-zero meanH̄ and
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Fig. 1. System architecture with a linear precoderF and a STBCC.

a full-rank transmit antenna correlationRt (6), assumingRr =
I. We study a system employing a space-time block codeC to
capture the channel diversity and a precoderF to exploit the CSIT,
depicted in Figure 1. This structure has often been studied in the
literatures for exploiting various forms of CSIT [2, 1, 3].

We focus on a linear precoder, which functions as a multi-
mode beamformer. The precoder left singular vectors are the
beam directions; the singular values provide the beam powerallo-
cation; and the right singular vectors form the input shaping ma-
trix, combining the input symbols from the space-time blockcode
(STBC). To maintain a constant average sum transmit power, the
precoder must satisfy the power constraint

tr(FF
∗) = 1. (8)

The receive signal block is then

Y = HFC + Ñ ,

whereÑ is the additive complex white Gaussian noise.

4.1. PEP based precoder design

We consider an existing precoder design based on the codeword
pair-wise error probability (PEP) criterion [3]. Define thecode-
word distance product matrix between a pair of codeword(C, Ĉ)
as

A =
1

P
(C − Ĉ)(C − Ĉ)∗ , (9)

whereP is the average sum transmit power from all antennas.
Using ML detection, the PEP on mis-detectingC asĈ can then
be upper-bounded by the Chernoff bound as

P (C → Ĉ) ≤ exp
(

−
γ

4
tr
(

HFAF
∗
H

∗
)

)

, (10)

whereγ is the signal-to-noise ratio (SNR). The precoder is ob-
tained by minimizing this Chernoff bound, averaged over thechan-
nel distribution, for a pair of minimum-distance codewords.

Applying the dynamic CSIT model (5), the channel has a func-
tional channel mean̂Hs and a functional transmit correlationRt,s.
For imperfect CSIT (ρ < 1), sinceRt is full-rank, the functional
correlationRt,s is non-zero and invertible. Averaging (10) over
the functional channel statistics, we obtain the followingbound
on the average PEP:

P̄e ≤
exp

[

tr(ĤsW
−1

Ĥ
∗
s)

]

det(W)M
det(Rt,s)

Mexp
[

−tr(ĤsR
−1

t,s Ĥ
∗
s)

]

,

(11)
where

W =
γ

4
Rt,sFAF

∗
Rt,s + Rt,s . (12)

In the caseA = µ0I for some scalarµ0, minimizing the above
bound can be solved analytically using convex optimizationthe-
ory to arrive at the solution [3]

FF
∗ =

[

1

2ν
(MIN + Ψ

1

2 ) − R
−1

t,s

]

4

µ0γ
, (13)

where
Ψ = M2

IN + 4νR−1

t,s Ĥ
∗
sĤsR

−1

t,s ,

andν is the Lagrange multiplier satisfying the power constraint
(8). Efficient algorithms to solve forν are outlined in [3]. This
reference also includes the precoding solution for the non-scaled-
identityA case.

For perfect CSIT (ρ = 1), it can be easily shown that the
precoder minimizing the bound in (10) is a rank-one matrix with
the defined left and right singular vectors given by the dominant
eigenvectors ofH∗

H andA, respectively. Thus, the precoder be-
comes single-mode beamforming. The average PEP then satisfies

P̄e ≤ E
[

exp
(

−
γ

4
λmax(H

∗
H)λmax(A)

)]

, (14)

where the expectation is taken over the distribution ofλmax(H
∗
H),

the largest eigenvalue ofH∗
H.

4.2. Diversity analysis

We now analyze the diversity order obtained by systems using
the above PEP-based precoder and a STBC, assuming a channel
estimate qualityρ. Since diversity is a high-SNR measure, for
imperfect CSIT (ρ < 1), we examine the bound (11) while taking
γ → ∞. Noting that onlyW depends onγ, and that the Chernoff
bound is tight at high SNR, the system diversity order is

d = lim
γ→∞

−
tr(ĤsW

−1
Ĥ

∗
s) − M log det(W)

log γ
. (15)

From (12),W−1 → R
−1

t asγ → ∞; thus, the trace term in (15)
vanishes, and the diversity order becomes

d = lim
γ→∞

M log det(W)

log γ
. (16)

As γ → ∞, the solution (13) approaches a precoder with equi-
power allocation on the non-zero eigen-modes ofA, and the left
and right singular vectors given by the eigenvectors ofRt,s andA,
respectively [3]. Thus, letRt = UtΛtU

∗
t andA = UAΛAU

∗
A

be the respective eigenvalue decompositions, then at high SNR,
W (12) approaches

Wγ limit =
γ(1 − ρ2)

4L
UtΛ

2

tΛAUt , (17)

whereL is the number of non-zero eigenvalues ofA, determined
by the diversity order of the STBC. Forρ < 1, the rank ofWγ limit

is L; thus, the system diversity order (16) isML. Therefore, with
imperfect CSIT, the precoder and the channel estimate quality ρ

have no impact on the diversity achieved by the system; the trans-
mit diversity is solely determined by the STBC.

For perfect CSIT (ρ = 1), it can be shown that the resulting
diversity order from (14) is the maximumMN (see [4], Section
5.4.4). The proof is based on loosening the bound in (10), by
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Fig. 2. Performance of the minimum-distance PEP precoder with chan-
nel estimate CSIT for a4 × 1 system.

replacingA with Iλmax(A) and using no precoder (F = 1√
N

I);
this relaxed bound has diversity orderMN . Thus, the precoder
for perfect CSIT achieves full diversity, regardless of theSTBC.

The above analyses show that the diversity obtained by the
precoder depends on the CSIT. When the CSIT is imperfect, no
diversity can be extracted by the precoder; the STBC then plays an
essential role in obtaining transmit diversity in the system. Only
when the CSIT is perfect that the precoder delivers the full trans-
mit diversity order. In both cases, however, the precoder achieves
an SNR gain, which is the essential value of precoding.

5. RESULTS AND DISCUSSION

We provide simulation results for a4 × 1 system, using the dy-
namic CSIT framework. The channel meanH̄ and the transmit
correlationRt are given in the Appendix. The system employs a
rate 3

4
orthogonal STBC for 4 transmit antennas [13]. The error

performance is averaged over multiple initial channel measure-
ments, independently generated from the channel distribution, and
multiple channel estimates given each initial measurement.

Figure 2 shows the system performance given different esti-
mate qualityρ values. The performance improves with higherρ.
Whenρ = 0, the precoding gain is that of statistical CSIT alone;
asρ → 1, the gain increases to the maximum of 6dB with perfect
CSIT for a4 × 1 system.

Figure 3 presents the performance as a function of the estimate
quality ρ. This result shows that the initial channel measurement
helps increase the precoding gain only when its correlationwith
the current channel is reasonably high,ρ ≥ 0.6 in this case; other-
wise, precoding on the channel statistics alone (ρ = 0) can extract
most of the gain.

The precoder is compared with a beamforming scheme that
uses only the initial channel measurementH0, shown in Figure 4.
With perfect CSIT (numerically represented byρ = 0.99), these
two schemes coincide and are optimal for a4 × 1 channel. How-
ever, asρ decreases, theH0 beamforming scheme starts loosing
diversity at high SNR and eventually performs even worse than
without precoding. The precoder exploiting the dynamic CSIT
(5), on the other hand, provides gains over no precoding for all
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Fig. 3. Performance versus the channel estimate quality.
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Fig. 4. Performance comparison with a beamforming scheme relying
only on outdated channel measurements.

ρ values. This result shows the robustness of the dynamic CSIT
framework.

6. CONCLUSION

We have constructed a dynamic CSIT framework, using a poten-
tially outdated channel measurement, the channel statistics (mean
and covariance), and the channel temporal correlation factor. The
resulting CSIT is in the form of a functional channel mean and
a functional covariance. The framework is simple and optimally
captures the available channel information, taking into account its
time variation via the temporal correlation factor. Depending on
this factor, the CSIT ranges from statistical channel information
to perfect channel knowledge.

The dynamic CSIT framework allows the application of pre-
coding schemes exploiting both the channel mean and the covari-
ance. Results show that precoding on dynamic CSIT is robust
to different channel estimate qualities and can achieve significant
gains. Furthermore, the initial channel measurement helpsin-
crease the precoding gain if its correlation with the current channel
is relatively high (ρ ≥ 0.6); the gain then improves with a higher



correlation factor. When this correlation is weak, precoding on
the channel statistics alone obtains most of the available gain.

APPENDIX

The channel mean and transmit antenna correlation matricesused
in simulations are (numbers are rounded to two digits after the
decimal point)

H̄ =
[

.27 − .17i −.06 + .18i .14 + .25i .33 − .27i
]

,

Rt =









.86 .26 − .60i .25 − .14i .16 + .10i

.26 + .60i 1.03 .52 + .03i −.09 − .08i

.25 + .14i .52 − .03i .72 −.50 − .25i

.16 − .10i −.09 + .08i −.50 + .25i 1.39









.
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