
A Partial Decode-Forward Scheme For A Network
with N relays

Yao Tang
ECE Department, McGill University

Montreal, QC, Canada
Email: yao.tang2@mail.mcgill.ca

Mai Vu
ECE Department, Tufts University

Medford, MA, USA
Email: maivu@ece.tufts.edu

Abstract—We study a discrete-memoryless relay network con-
sisting of one source, one destination and N relays, and design
a scheme based on partial decode-forward relaying. The source
splits its message into one common and N + 1 private parts,
one intended for each relay. It encodes these message parts using
N th-order block Markov coding, in which each private message
part is independently superimposed on the common parts of
the current and N previous blocks. Using simultaneous sliding
window decoding, each relay fully recovers the common message
and its intended private message with the same block index, then
forwards them to the following nodes in the next block. This
scheme can be applied to any network topology. We derive its
achievable rate in a compact form. The result reduces to a known
decode-forward lower bound for an N-relay network and partial
decode-forward lower bound for a two-level relay network. We
then apply the scheme to a Gaussian two-level relay network and
obtain its capacity lower bound considering power constraints at
the transmitting nodes.

I. INTRODUCTION

The relay channel first introduced by van der Meulen [1]
consists of a source aiming to communicate with a destination
with the help of a relay. In [2], Cover and El Gamal introduce
the cut-set bound and two coding strategies, namely decode-
forward and compress-forward, for the basic three-node relay
channel. By allowing the relay to decode only a part of the
transmitted message, partial decode-forward can be considered
as the generalization of decode-forward [2], [3].

In the past few years, substantial research activities have
been dedicated to extending the classical one-relay channel
to a general relay network consisting of N communicating
parties. In [4], Gastpar and Vetterli discuss the asymptotic
capacity in the limit as the number of relays tends to infinity
and the scaling behavior of capacity for a large class of
Gaussian relay networks. Recently, Lim, Kim, El Gamal
and Chung propose a compress-forward based scheme (noisy
network coding) [5] for the general multi-source multicast
noisy network, which includes network coding [6] as a special
case.

However, it is still unclear how to generalize decode-
forward relaying to the multi-source multicast network. In
[7], Xie and Kumar analyze a multiple-level relay channel
with one source and one destination and give an achievable
rate based on full decode-forward. This scheme is extended
in [8], in which all relays successively decode only part of
the messages of the previous relay, and obtains the capacity
of semi-deterministic and orthogonal relay networks. In [9]
and [10], Ghabeli and Aref generalize partial decode-forward
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Fig. 1. General discrete memoryless relay network

in a two-level relay network, considering all possible partial
decoding conditions that can occur among different message
parts of at the source and the relays.

There are three common approaches for the decode-forward
strategy, namely: (a) irregular encoding/sequential decoding;
(b) regular encoding/simultaneous sliding window decod-
ing; (c) regular encoding/backward decoding [11]. For semi-
deterministic relay networks [12], the second and the third
approaches can achieve the same rate, which is greater than
that of the first approach. Furthermore, the second approach
creates less delay than the third one.

In this paper, we propose a novel transmission scheme
for a single-source single-destination network with N relays
based on regular encoding and simultaneous sliding window
decoding. The source splits its message into one common
and N + 1 private parts and performs block Markov coding.
Each relay helps forward the common part and the private
message part intended for itself. We derive the achievable rate
in a compact form and show that this scheme can reduce
to the network decode-forward scheme of [2] and partial
decode-forward for two-level relay network in [10]. Finally,
we analyze a two-level relay network in AWGN environments
and provide the achievable rate.

II. PRELIMINARIES

A. Discrete Memoryless Relay Networks

Consider a discrete memoryless relay network (DM-
RN) with N + 2 nodes (X0 × X1 × · · · × XN ,
p(y1, y2, . . . , yN+1|x0, x1, . . . , xN ), Y1 × Y2 × · · · × YN+1),
where source node 0 wants to send a message M to the
destination node N+1 with the help of relay nodes 1, . . . , N ,
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Fig. 2. The proposed private message scheme for a single-source single-
destination network with N relays

as shown in Figure 1. A (2nR, n) code for this DM-RN
consists of:
• A message set M = [1 : 2nR].
• A source encoder that assigns a codeword xn0 (m) to each

message m ∈ [1 : 2nR].
• A set of relay encoders k ∈ [1 : N ], which assigns a

symbol xki(yi−1k ) to each received sequence yi−1k for i ∈
[1 : n].

• A destination decoder, which assigns an estimate m̂N+1

to each received sequence ynN+1 ∈ YnN+1, or declares an
error message e.

Definitions for the average error probability, achievable rate
and capacity follow the standard ones in [13].

B. Definitions and Notation

To make the following analysis more concise and readable,
we introduce some definitions and clarify notation in this
section.
• Define T = {1, . . . , N} as the complete set of all relays.
• Define S to be a subset of T , that is S ⊆ T and Sc =
T −S. Either S or Sc can be empty and the largest S is
T .

• Denote M j
i = {Mi,Mi+1, . . . ,Mj}, where j ≥ i. For

example, UN−12 means {U2, U3, . . . , UN−1}, where N ≥
3.

• Given nonempty set L and variable M , let ML =
{Mi}i∈L = {Ma,Mb,Mc, . . . }, where a, b, c, · · · ∈ L
and are different from each other. |L| signifies the cardi-
nality of L.

III. A NETWORK PARTIAL DECODE-FORWARD SCHEME

Consider a network consisting of a single source, single
destination and N relays as in Figure 2. The source has direct
links to all relays and to the destination, and connections
among the relays and the destination are arbitrary. We design
a novel coding scheme for this relay network based on partial
decode-forward relaying.

Let all relay nodes be ordered in an arbitrary order per-
mutation π(·). In each order, we assume that the kth relay
decodes information from all nodes below it, (i.e. order
{1, . . . , k−1}) and forwards information to nodes above it (i.e.
order {k+1, . . . , N}). Next, we will describe the scheme for
the nominal order π = [1, 2, . . . , N ] to simplify the notation,
keeping in mind that it can also be applied to any other order
π.

The new idea in this scheme is the way it performs rate
splitting. At each block transmission, the source splits its

message into N + 2 parts: a common message and N + 1
private messages, one intended for each relay and one for the
destination. These messages are then encoded using N th order
block Markov coding. Each relay fully recovers the common
message and its intended private message with same block
index as the common message, then forwards them together
in the next block.

Specifically, let the source message in block j be split
as mj = (m0j ,m1j , . . . ,m(N+1)j), where m0 denotes the
common message that is forwarded among all relays, mk

denotes the message intended to be decoded at relay k, but not
at other relays, and mN+1 denotes the message intended to be
decoded only at the destination. The rate is R =

∑N+1
i=0 Ri.

Block Markov superposition coding is used to generate the
independent codewords in each block as follows (for simpler
notation we suppress block index in codewords here, but will
include it in the detailed proof later).
• Wk, k ∈ {0} ∪ T , carries common message m0,j−k of

different blocks. Wk are successively superimposed on
each other as in block Markov encoding.

• {Uk}, k ∈ T , carries private message mk to be decoded
at relay k and not decoded at other relays. Each Uk is
superimposed on all Wk.

• Xk, k ∈ T , is the codeword sent by relay k which
supports the forwarding of the message in Uk (of the
previous block) and all Wl (l ≤ k).

• X0 is the codeword sent by the source which carries all
messages including the remaining message mN+1 to be
decoded only at the destination. X0 is superimposed on
all {WN

0 }, {UN1 } and {XN
1 }.

At each block j, the source sends X0 which contain-
s all {WN

0 }, {UN1 } and {XN
1 }. Each relay k decodes

{W0, . . . ,Wk−1} from all previous nodes and Uk from the
source. Then in block j + 1, it transmits Xk which carries
its private message of block j − k (mk,j−k) superimposed
on all previous-block common messages. The destination uses
joint decoding simultaneously over all blocks. Specifically, it
waits until the end of the last block to decode all messages
carried by {WN

0 }, {UN1 } and {XN
0 } simultaneously using

signals received in the last N blocks. This coding scheme is
illustrated in Figure 2.

Theorem 1. For a single-source single-destination
network with N relays (X0 × X1 × · · · × XN ,
p(y1, y2, . . . , yN+1|x0, x1, . . . , xN ), Y1 × Y2 × · · · × YN+1),
by using partial decode-forward, the capacity C is lower
bounded by (1), where π(·) denotes a permutation order for
the relay nodes.

Proof: We use a block coding scheme in which each user
sends b−N messages over b blocks of n symbols. Each relay
and the destination employ simultaneous decoding.

A. Codebook generation

Fix the joint distribution in (2) where the meaning of each
component is as follows:
• p(Wk|WN

k+1): at relay k, the current common message is
superimposed on previous common messages.
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Fig. 3. Encoding diagram of a single-source single-destination network with N relays (arrows denote superposition structure)

• p(Xk|WN
k ): at relay k, the current private message is

superimposed on the current and previous common mes-
sages.

• p(W0|WN
1 ): at the source, the current common message

is superimposed on the common messages of all previous
N blocks.

• p(Uk|WN
0 , Xk): at the source, the private message for a

specific relay is superimposed on all common messages
and the previous private message for that relay.

• p(X0|UN1 ,WN
0 , X

N
1 ): at the source, the private message

for the destination is superimposed on all common mes-
sages and all private messages for all relays.

Figure 3 illustrates the superposition coding
structure. In block j, the source splits its message
as mj = [mN+1,j ,mN,j , . . . ,m1,j ,m0,j ]. For every
relay node k = N, . . . , 1 and every message set
{m0,j−N , . . . ,m0,j−k,mk,j−k}:
• Randomly and independently generate 2nR0 sequences
wnk (m0,j−k|m0,j−k−1

0,j−N ) for all m0,j−k ∈ [1 : 2nR0 ], each
according to

∏n
i=1 pWk|WN

k+1
(wki|wN,ik+1,i),

• Randomly and independently generate 2nRk sequences
xnk (mk,j−k|m0,j−k

0,j−N ) for all mk,j−k ∈ [1 : 2nRk ], each
according to

∏n
i=1 pXk|WN

k
(xki|wN,ik,i ).

For source node k = 0 and each message set mN+1,j
0,j .

• For all sequence wnk (m0,j−k|m0,j−k−1
0,j−N ) with k ∈ T ,

randomly and independently generate 2nR0 sequences
wn0 (m0,j |m0,j−1

0,j−N ) for m0,j ∈ [1 : 2nR0 ], each according

to
∏n
i=1 pW0|WN

1
(w0,i|wN,i1,i ),

• For each k ∈ T , randomly and independently gen-
erate 2nRk sequences unk (mk,j |m0,j

0,j−N ,mk,j−k) for
all mk,j−k ∈ [1 : 2nRk ], each according to∏n
i=1 pUk|WN

0 ,Xk(uki|w
N,i
0,i , xk,i),

• Randomly and independently generate 2nRN+1 se-
quences xn0 (mN+1,j |mN,j

1,j ,m
0,j
0,j−N , {mk,j−k}k∈T ) for

all mN+1,j ∈ [1 : 2nRN+1 ], each according to∏n
i=1 pX0|UN1 ,WN

0 ,XN1
(x0i|uN,i1,i , w

N,i
0,i , x

N,i
1,i ).

The codebook is independently generated in each block as
above and then is revealed to all the parties.

B. Encoding
To send {mN+1,j , . . . ,m0j} in block j, the source transmits

xn0 (mN+1,j |mN,j
1,j ,m

0,j
0,j−N , {mk,j−k}k∈T ) from codebook Cj .

At the end of block j, each relay k ∈ T has an estimate
m̃k,j−k+1 of message mk,j−k+1 and m̃0,j−k+1 of message
m0,j−k+1. In the block j + 1, each relay k ∈ T transmits
xnk (m̃k,j−k+1, m̃

0,j−k+1
0,j−N+1) from codebook Cj+1.

C. Decoding
1) Simultaneous decoding at the first relay: At the end of

block j, by knowing m0,j−1
0,j−N and m2,j−1, the first relay k = 1

decodes m1,j and m0,j such that:(
un1 (m1,j |m0,j

0,j−N+1,m1,j−1), w
n
0 (m0,j |m0,j−1

0,j−N+1),

wn1 (m0,j−1|m0,j−2
0,j−N ), xn1 (m1,j−1|m0,j−1

0,j−N ),

wn2 , w
n
3 , . . . , w

n
N , y

n
1 (j)) ∈ T (n)

ε . (3)



The decoding error probability goes to 0 as n→∞, if

R1 < I(U1;Y2|WN
0 , X1), (4)

R1 +R0 < I(U1,W0;Y2|X1,W
N
1 ). (5)

2) Simultaneous sliding window decoding at other relays
k ∈ [2 : N ]: At the end of block j, by knowing m0,j−k

0,j−N−k+1
and mk,j−k, the relay node k will decode mk,j−k+1 and
m0,j−k+1 such that the following conditions hold simultane-
ously: (

wnk−1(m0,j−k+1|m0,j−k
0,j−N ), wnk (m0,j−k|m0,j−k−1

0,j−N ),

xnk (mk,j−k|m0,j−k
0,j−N ), wnk+1, w

n
k+2, . . . , w

n
N , y

n
k (j)

)
∈ T (n)

ε .

...(
wn1 (m0,j−k+1|m0,j−k

0,j−k−N+2), w
n
2 , . . . , w

n
k−1, w

n
k , x

n
k ,

wnk+1, . . . , w
n
N , y

n
k (j − k + 2)

)
∈ T (n)

ε .

(
unk (mk,j−k+1|m0,j−k+1

0,j−N−k+1,mk,j−2k+1),

wn0 (m0,j−k+1|m0,j−k
u,j−N−k+1), w

n
1 , w

n
2 , . . . , w

n
k−1,

xnk , w
n
k , w

n
k+1, . . . , w

n
N , y

n
k (j − k + 1)

)
∈ T (n)

ε . (6)

Therefore, there are k decoding rules to be satisfied simulta-
neously at relay k. The decoding error probability goes to 0,
as n→∞, if

Rk < I(Uk;Yk|WN
0 , Xk), (7)

Rk +R0 < I(Uk,W
k−1
0 ;Yk|Xk,W

N
k ). (8)

Detailed error analysis at relay k is in Appendix A.
3) Simultaneous sliding window decoding at destination

node N+1: At the end of block j, the destination node N+1
will decode mk,j−N for all k ∈ T ∪ {N + 1} and m0,j−N
such that the following conditions hold simultaneously:(

xnN (mN,j−N |m0,j−N ), wnN (m0,j−N ), ynN+1(j)
)
∈ T (n)

ε .

...(
xnN−i+1(mN−i+1,j−N |m0,j−N

0,j−N+1−i),

wnN−i+1(m0,j−N |m0,j−N
0,j−N+1−i),

xnN−i+1, w
n
N−i+1, . . . , x

n
N , w

n
N , y

n
N+1(j − i+ 1)

)
∈ T (n)

ε .

...(
xn1 (m1,j−N |m0,j−N

0,j−2N+1), w
n
1 (m0,j−N |m0,j−N−1

0,j−2N+1),

xn2 , w
n
2 , . . . , x

n
N , w

n
N , y

n
N+1(j −N + 1)

)
∈ T (n)

ε .

And, (
{unk (mk,j−N |m0,j−N

0,j−2N ,mk,j−N−k)}k∈T ,

xn0 (mN+1,j−N |mN,j−N
1,j−N ,m0,j−N

0,j−2N ,

{mk,j−N−k}k∈T ), wn0 (m0,j−N |m0,j−N−1
0,j−2N ),

xn1 , w
n
1 , x

n
2 , w

n
2 , . . . , x

n
N , w

n
N , y

n
N+1(j −N)

)
∈ T (n)

ε . (9)

We have N +1 decoding rules to be satisfied simultaneously.
The decoding error probability goes to 0, as n→∞, if

N+1∑
i=0

Ri < I(UN1 , X
N
0 ,W

N
0 ;YN+1), (10)∑

i∈S
Ri +RN+1 < I(X0, XS , US ;YN |XSc , USc ,W

N
0 ), (11)

RN+1 < I(X0;YN+1|UN1 , XN
1 ,W

N
0 ), (12)

N+1∑
i=1

Ri < I(UN1 , X
N
0 ;YN+1|WN

0 ), (13)

where S is a subset of T that contains wrongly decoded
messages at the relay. Detailed error analysis at the destination
is in Appendix B.

D. Combination Process

From (10), we can directly get that:

R < I(UN1 , X
N
0 ,W

N
0 ;YN+1). (14)

From (11), (7) and (8), we get

R =

(
RN+1 +

∑
i∈S

Ri

)
+ min
j∈Sc

(Rj +R0) +

 ∑
i∈Sc,i6=j

Ri


< I(X0, XS , US ;YN+1|XSc , USc ,W

N
0 ) (15)

+ min
j∈Sc

I(W j−1
0 ;Yj |Xj ,W

N
j ) +

∑
i∈Sc

I(Ui;Yi|WN
0 , Xi),

for all S ⊂ T .
From (7), (8), (12) and (13), we get

2R <

N+1∑
i=1

Ri +RN+1

+ min
i,j∈T

(Ri +R0) + (Rj +R0) +
∑

l∈T,l 6=i,j

Rl


< I(UN1 , X

N
0 ;YN+1|WN

0 ) + I(X0;YN+1|UN1 , XN
1 ,W

N
0 )

+ 2min
j∈T

I(W j−1
0 ;Yj |Xj ,W

N
j )

+ 2
∑
i∈T

I(Ui;Yi|WN
0 , Xi), (16)

However, if we let S = ∅ in (15) and double the right-hand-
side (RHS) expression, then we can get a smaller expression
than the RHS of (16). Thus, (16) is redundant.

After this combination process, we get the rate in (1).

E. Special Networks

If N = 2, we have the partial decode-and-forward lower
bound for a two-level relay network as shown in Figure 4,
which coincides with the result in [10].

For a general N , if we set private parts UN1 = 0 and
mN+1 = 0, we can get Xie and Kumar’s [7] network decode-
forward lower bound as shown in Figure 5. Furthermore, if
N = 1, it reduces to the decode-forward lower bound [2] for
the discrete-memoryless relay channel (DM-RC).
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IV. GAUSSIAN RELAY NETWORKS

The Gaussian relay network can be modeled as

Yk =

k−1∑
i=0

gikXi + Zk, (17)

where k ∈ T ∪ {N + 1}, gik is the coefficient of the link
from node i to node j, and Zk is noise at the decoder with
Gaussian distribution N (0, 1). There is a power constraint at
each transmitting node as Pk.

As shown in Figure 4, the Gaussian two-level relay network
can be modeled as

Y3 = g03X0 + g13X1 + g23X2 + Z3,

Y2 = g02X0 + g12X1 + Z2, Y1 = g01X0 + Z1, (18)

where Z3, Z2 and Z1 are independent AWGN noise according
to the normal distribution N (0, 1). The signaling at each node
can be written as

x2 = α22W2(w0,j−2) + β22V2(w2,j−2),

x1 = α11W1(w0,j−1) + α12W2(w0,j−2) + β11V1(w1,j−1),

x0 = α00W0(w0,j) + α01W1(w0,j−1) + α02W2(w0,j−2)

+ β01V1(w1,j−1) + β02V2(w2,j−2)

+ φ01U1(w1,j) + φ02U2(w2,j) + φ03U3(w3,j), (19)

where W2, V2, W1, V1, W0, U1, U2, U3 are independent,
normalized Gaussian random variables N (0, 1); {α∗, β∗, φ∗}
are power allocations satisfying the following constraints:

α2
22 + β2

22 = P2, α2
11 + α2

12 + β2
11 = P1,

α2
00 + α2

01 + α2
02 + β2

01 + β2
02 + φ201 + φ202 + φ203 = P0, (20)

where P0, P1 and P2 are power constraints at the correspond-
ing node, which can be set equal to each other without loss
of generality.

Corollary 1. The capacity for a Gaussian two-level relay
network in (18) is lower bounded by:

C ≥ min {I1 + I4 + I5, I2 + I3 + I5, I2 + I7, I4 + I6, I8} ,
(21)

where

I1 =
1

2
log

(
1 +

g201φ
2
01

g201(β
2
02 + φ202 + φ203) + 1

)
,

I4 =
1

2
log

(
1 +

g202(α00 + φ02)
2 + (g02α01 + g12α11)

2

(g02β01 + g12β11)2 + g202(φ
2
01 + φ203) + 1

)
,

I3 =
1

2
log

(
1 +

g202φ
2
02

(g02β01 + g12β11)2 + g202(φ
2
01 + φ203) + 1

)
,

I2 =
1

2
log

(
1 +

g201(α
2
00 + φ201)

g201(β
2
02 + φ202 + φ203) + 1

)
,

I5 =
1

2
log
(
1 + g203φ

2
03

)
,

I6 =
1

2
log
(
1 + (g03β01 + g13β11)

2 + g203(φ
2
01 + φ203)

)
,

I7 =
1

2
log
(
1 + (g03β02 + g23β22)

2 + g203(φ
2
02 + φ203)

)
,

I8 =
1

2
log
(
1 + g203P0 + g213P1 + g223P2

+ 2g03g13(α01α11 + α02α12 + β01β11)

+2g03g23(α02α22 + β02β22) + 2g13g23α12α22) ,

and αij , βij , φij (i ∈ {0, 1, 2},j ∈ {0, 1, 2, 3}) are power
allocations satisfying (20).

Proof: Applying the signaling in (19) to the rate region
in Theorem 1, we obtain (21).

V. CONCLUSION

In this paper, we consider partial decode-forward relaying
in a single-source single-destination network with N relays.
We design a scheme in which each relay forwards the common
message part and a specific private part to the following
nodes. The proof is based on block Markov encoding and
simultaneous sliding window decoding. The key point is that
each relay decodes and forwards its private part only when
the last common part with the same block index arrives.
We then obtain the achievable rate for this scheme, which
can be expressed in a compact form over all cutsets and
permutations of relays. We show that this scheme contains
existing results for an N -relay network with decode-forward
and a two-level relay network with partial decode-forward
considering all message splitting cases. We then study the
Gaussian two-level relay network and derive the achievable
rate by the proposed scheme.

APPENDIX A
ERROR ANALYSIS AT RELAY k

Assume without loss of generality that
(mk,j−k+1,m0,j−k+1) = (1, 1) is sent in block j.

We first define the following events:

• Ei(mk,j−k+1,m0,j−k+1), for i ∈ [1 : k], is when only
the ith decoding rule is satisfied. We simplify the notation
as Ei in the following analysis.

• E(mk,j−k+1,m0,j−k+1) as the event that all decoding
rules are satisfied simultaneously.



Pe ≤Pc(Ec({1}N+1, 1)) +
∑

m0,j−N 6=1,{mi,j−N}i∈T ,mN+1,j−N

Pc(E({mi,j−N}i∈T ,mN+1,j−N ,m0,j−N ))

+
∑

m0,j−N=1,{mi,j−N}i∈S 6=1,{mi,j−N+2}i∈Sc=1,mN+1,j−N

Pc(E({mi,j−N}i∈S , {1}|Sc|,mN+1,j−N )) (22)

Then, by the union bounds, the probability of error is
bounded as

Pe ≤ Pc(Ec(1, 1))
+

∑
m0,j−k+1=1,mk,j−k+1 6=1

Pc(E(mk,j−k+1, 1))

+
∑

m0,j−k+1 6=1,mk,j−k+1

Pc(E(mk,j−k+1,m0,j−k+1)),

where Pc is the conditional probability given that (1, 1) was
sent.

By the law of large number, Pc(Ec(1, 1))→ 0 as n→∞.
By the joint typicality lemma, we have∑

m0,j−k+1=1,mk,j−k+1 6=1

Pc(E(mk,j−k+1, 1))

≤ 2nRk × 2−n(I(Uk;Yk|W
N
0 ,Xk)−δ(ε)),

which goes to 0 as n→∞, if

Rk < I(Uk;Yk|WN
0 , Xk)− δ(ε).

According to the independence of the codebooks and the
joint typicality lemma,∑
m0,j−k+1 6=1,mk,j−k+1

Pc(E(mk,j−k+1,m0,j−k+1))

= Pc(∪mk,j−k+1
∪m0,j−k+16=1

(E1 ∩ E2 ∩ · · · ∩ Ek))
≤

∑
mk,j−k+1

∑
m0,j−k+16=1

P (E1)× P (E2)× · · · × P (Ek)

≤ 2nRk × 2nR0 × 2−n(I(Wk−1;Yk|Xk,WN
k )−δ(ε))

× 2−n(I(Wk−2;Yk|Xk,WN
k−1)−δ(ε)) × · · ·×

2−n(I(W2;Yk|Xk,WN
3 )−δ(ε)) × 2−n(I(Uk,W1;Yk|Xk,WN

2 )−δ(ε)),

which tends to 0 as n→∞ if

Rk +R0 < I(Uk,W
k−1
1 ;Yk|Xk,W

N
k )− kδ(ε).

APPENDIX B
ERROR ANALYSIS AT DESTINATION N + 1

Assume without loss of generality that
({mk,j−N}k∈T ,m0,j−N ,mN+1,j−N ) = (1, 1, . . . , 1) was
sent in block j.

We first define the following events:
• Ei({mk,j−N}k∈T ,m0,j−N ,mN+1,j−N ), i ∈ [1 : N+1],

as the event that only the ith decoding rule is satisfied.
We simplify the notation as Ei in the following analysis.

• E({mk,j−N}k∈T ,m0,j−N ,mN+1,j−N ) as the event that
all N + 1 decoding rules are satisfied simultaneously.

We define set S to be the set of wrongly decoded pri-
vate messages and Sc as the set of correctly decoded pri-
vate messages at the destination. Then, by the union of
events bound, the probability of error is bounded as in
(22), where Pc is the conditional probability given that
({mk,j−N}k∈T ,m0,j−N ,mN+1,j−N ) = (1, 1, . . . , 1) was
sent. By the law of large number, Pc(Ec({1}N+1, 1)) → 0
as n → ∞. It is impossible to correctly decode mN+1,j−N
if any of {mk,j−N}k∈T isn’t decoded correctly. According to
the independence of codebooks and the joint typicality lemma,
the third term in (22) tends to 0 as n→∞ if∑
i∈S

Ri +RN+1 <I(X0, {Xi, Ui}i∈S ;YN+1|{Xj , Uj}j∈Sc ,WN
0 )

− (|S|+ 1)δ(ε).

Similarly, according to the independence of codebooks and
the joint typicality lemma, the second term in (22) tends to 0
as n→∞ if
N+1∑
i=1

Ri +R0 < I(UN1 , X
N
0 ,W

N
0 ;YN+1)− (N + 1)δ(ε).
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