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A B S T R A C T

Directed evolution of enzymes consists of an iterative process of creating mutant libraries and choosing desired
phenotypes through screening or selection until the enzymatic activity reaches a desired goal. The biggest
challenge in directed enzyme evolution is identifying high-throughput screens or selections to isolate the
variant(s) with the desired property. We present in this paper a computational metabolic engineering
framework, Selection Finder (SelFi), to construct a selection pathway from a desired enzymatic product to a
cellular host and to couple the pathway with cell survival. We applied SelFi to construct selection pathways for
four enzymes and their desired enzymatic products xylitol, D-ribulose-1,5-bisphosphate, methanol, and aniline.
Two of the selection pathways identified by SelFi were previously experimentally validated for engineering
Xylose Reductase and RuBisCO. Importantly, SelFi advances directed evolution of enzymes as there is currently
no known generalized strategies or computational techniques for identifying high-throughput selections for
engineering enzymes.

1. Introduction

Directed evolution has emerged as a key technology to generate
enzymes with new or improved properties, such as altered substrate
specificity and enantioselectivity (Nair et al., 2010), thermal stability
(Bastian et al., 2005; Hao and Berry, 2004; Miyazaki et al., 2006), and
organic solvent resistance (Seng Wong et al., 2004; You and Arnold,
1996). A prominent example is commercially viable subtilisin, whose
stability in detergent solutions was enhanced using directed evolution
(Bryan, 2000). Several other such successful products include potent
therapeutic agents (Vasserot et al., 2003; Kurtzman et al., 2001;
Vellard, 2003), novel vaccines (Delagrave and Murphy, 2003;
Marshall, 2002), and potent antibodies (Delagrave and Murphy, 2003).

Directed evolution begins by selecting a target – an enzyme with
engineering potential – and a desired functional goal. An iterative
process of creating mutant libraries and choosing desired phenotypes,
through screens or selection, over a synthetic fitness landscape is then
initiated until the goal is achieved or the desired property cannot be
further improved. Significant research efforts focused on developing
methodologies to create larger mutant libraries with greater functional
diversity (Nair and Zhao, 2009) (e.g., tunable error-prone PCRs,
saturation mutagenesis, indel mutagenesis, gene shuffling and homol-
ogy-independent recombination). Currently, the biggest bottleneck in

directed enzyme evolution is identifying high-throughput screens or
selections to isolate the variant(s) with the desired property. While a
screen links the desired property to some visual output using colori-
metric or fluorometric assays, a selection links the desired property to
an essential metabolic function such as host survival. Novel platforms
to screen larger libraries have been aided by technologies like
Fluorescence-Activated Cell Sorting (FACS) and microfluidic devices.
However, these ultrahigh-throughput screening methodologies have
primarily enabled engineering of non-catalytic function such as protein
stability or binding affinity. Adaptation of these methods to catalytic
functions has lagged far behind due to the inability to generically link
any biochemical transformation to readouts like cell density or
fluorescence. Hence, most directed evolution of enzymes are still
largely limited by the inability to identify and implement selections
or screens. This issue is widely recognized in the field (Dietrich et al.,
2010; Cobb et al., 2013), yet little has been done to address this
concern as a whole. Developing computational techniques to identify
screens or selections can not only significantly expedite experimental
practices, but also provide new opportunities to engineer enzymes
whose properties are not easily linkable to screen or selection.

We present in this paper a computational metabolic engineering
framework, referred to as Selection Finder (SelFi), to identify high-
throughput selections to isolate active mutant enzyme with a desired
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catalytic function. Given a desired enzymatic product, our framework
identifies several candidate selection pathways and corresponding
genetic engineering strategies for the host. The candidate pathways
are then ranked based on predicted consumption flux and required
cellular engineering efforts. An ideal selection provides maximum
dynamic range with minimal strain engineering effort. SelFi identifies
a selection pathway in four steps. In the first step, SelFi constructs
traversal pathways to consume the desired enzymatic reaction product
and convert it to a native metabolite within the cellular host. Utilizing a
pathway construction algorithm, ProPath (Yousofshahi et al., 2011),
reactions from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa et al., 2014; Kanehisa and Goto, 2000) database are used to
construct candidate consumption pathways. In the second and third
steps, SelFi identifies the minimal set of carbon sources and knockout
targets required to link cell survival with the consumption pathway and
to guarantee a minimum flux. In the last step, SelFi ranks the resulting
pathways based on flux, pathway length, and number of required
knockouts. To experimentally implement the selection, the mutagen-
ized library of the enzyme to be engineered and the identified
consumption pathway along with supporting pathways must be co-
expressed (using, for example, plasmids) in the selection strain with the
identified knockouts. This will create a high-throughput pooled library
system from which the desired enzymatic reaction will be selected.
Using Escherichia coli (E. coli) as host, we applied SelFi to identify
selection pathways for four enzymes (with desired reaction products) –
Xylose Reductase (xylitol), Phosphoribulokinase (D-ribulose-1,5-bi-
sphosphate), Aromatic Amino Acid Decarboxylase (aniline), and
Methane Monooxygenase (methanol). Results for two pathways iden-
tified by SelFi are confirmed as valid selection schemes based on
published literature. In addition, our results provide alternate strate-
gies and potential improvements to demonstrated selection schemes.

2. Methods

2.1. Construction of consumption pathways

To identify selection pathways, we utilize a modified version of
ProPath (Yousofshahi et al., 2011), a probabilistic algorithm for
constructing synthesis pathways that start from a metabolite within
the host and end with a desirable target. Using reactions in the KEGG
database, ProPath recursively explores a tree representing all possible
synthesis pathways that start from the target metabolite (Fig. 1).
ProPath selects a single reaction from a list of candidate reactions in
the KEGG database that involve the target metabolite as a product.
Reaction selection occurs with equal likelihood of selecting a candidate
reaction. The selected reaction, represented by an edge, is added to the
tree. This edge expands the tree by attaching new nodes representing
the product metabolites and cofactors of the selected reaction. Further
pathway construction proceeds in a depth-first fashion. Each added

node becomes a new root for the construction, unless the correspond-
ing metabolite is already present in the host organism or previously
added to the tree. A limit is set on the number of reactions that can be
used to construct a pathway. When the addition of a reaction to the tree
violates this limit, the search algorithm backtracks. The algorithm then
proceeds by adding to the tree another reaction that has not been
previously explored, effectively exploring an alternative pathway. If
none of these alternative routes satisfy the pathway length limit, the
algorithm further backtracks and continues from there. The algorithm
finishes when all permitted-length branches of the tree terminate in a
metabolite that is native to the host organism. Due to the probabilistic
nature of selecting the reactions, the completed tree does not exhaus-
tively enumerate all possible pathways. Rather, each tree represents a
single pathway from the target metabolite to one or more metabolites
that are native to the host. The search is iterated many times to explore
a diverse number of possible pathways. Our route construction is based
on ProPath, as it was shown effective in generating synthesis pathways
with fluxes comparable with those reported for limited-in-depth
exhaustive search methods. Additionally, ProPath was able to repro-
duce experimentally obtained pathways published in the literature. We
reverse ProPath's search direction to identify a pathway starting from a
compound of interest to an endogenous metabolite within the host. We
refer to the use of the algorithm in this reversed manner as
retroProPath. In retroProPath, the root of the tree is also the desired
product of an engineered enzymatic reaction. The first set of edges
added to the tree represents KEGG reactions that consume the desired
enzymatic product. A single reaction among them is selected with equal
likelihood to expand the tree. retroProPath continues the probabilistic
search using product-side non-cofactor metabolites of the selected
reaction. The in-depth path construction terminates when a metabolite
within the host is reached or the path length limit is reached. The
algorithm backtracks to explore a different pathway, as needed. To
ensure that reactant-side cofactors associated with the identified path-
way are available to the cell, SelFi utilizes ProPath to construct
supporting synthesis pathways that start from a metabolite within
the host and terminate at each such cofactor. The pathway from the
enzymatic product to a metabolite within the host along with these
supporting synthesis pathways are referred to as a consumption
pathway. Other pathway synthesis methods (e.g., PathPred (Moriya
et al., 2010), PathMiner (McShan et al., 2003)) can be utilized in place
of ProPath.

2.2. Evaluating consumption pathway flux and consumption demand

Flux Balance Analysis (FBA) (Varma and Palsson, 1994) is a
constraint-based approach for calculating the flow (flux) in a metabolic
network under steady-state conditions. A metabolic network consists of
m metabolites and n reactions. An m×n matrix, S, represents the
network where each row corresponds a metabolite and each column

Fig. 1. Probabilistic pathway construction using the ProPath algorithm (Yousofshahi et al., 2011). The dashed and solid lines show the possible routes and selected reactions,
respectively. (a) Tree representing all possible synthesis pathways for a target metabolite. The root of the tree is the target metabolite. (b) and (c) only one reaction is selected at a time, in
a depth-first fashion and (d) recursive exploration terminates at a metabolite within the host network.
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corresponds to a stoichiometrically balanced reaction. Matrix entry si,j
represents the stoichiometric coefficient of metabolite i in reaction j. A
vector, v, of length n, represents the flux in all network reactions. FBA
uses linear programming to solve a particular cellular objective such as
maximizing biomass production, or minimizing or maximizing the flux
for a particular reaction. A set of equations, S·v=0, constraint the
system to operate in steady state. Additional constraints imposed by
physiological conditions and metabolite exchange fluxes are repre-
sented as upper and lower bounds on each reaction flux.

In this work, FBA is utilized to evaluate the maximum and
minimum consumption flux through the engineered enzyme, and
hence through the consumption pathway. In addition, FBA is utilized
to assess the consumption demand for metabolites within the host. A
consumption pathway terminating at a high-demand metabolite within
the host suggests the possibility of constructing a high-flux consump-
tion pathway. A consumption pathway terminating at a low-demand
metabolite explains the low yield associated with such a consumption
flux.

We define the consumption demand of a metabolite as the
maximum sum of all outgoing fluxes consuming the metabolite. The
consumption flux of metabolite i with k consuming reactions connected
to the metabolite can be calculated using FBA by solving the following
optimization problem:

·

v

v v
v v v j k

S v 0

Maximize ∑
subject to

=
≥

≤ ≤ for = 1⋯

j
k

ij

bio bio
min

ij
lb

ij ij
ub

=1

where vij represents the consumption flux of metabolite i through its jth
consuming reaction, vij
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ubare respectively the associated lower

and upper bounds for vij, and vbio
min represents the minimum desired

biomass production rate. To identify the maximum demand while
allowing for reaction reversibility, several instance problems are
considered. With m reversible reactions connected to metabolite i, we
consider that each reversible reaction can operate in forward and
reverse directions. We then generate 2m possible objective functions
for the optimization problem, representing all possible reaction
directionalities associated with the consumption flux. Using FBA, we
assess consumption flux of metabolite i based on each of the objective
functions for a desired biomass production rate. Among all feasible
solutions obtained by FBA, we select the maximum as the consumption
demand associated with metabolite i. In this work, we evaluate the
consumption demand for metabolites within the cellular host.
Consumption pathways that terminate on host metabolites with low
consumption demand may not be suited for high-throughput selection.

2.3. SelFi framework

Given an engineered enzymatic reaction and its reactant and
product, SelFi constructs pathways that consume the enzymatic
product, and then engineers the cell to couple the consumption
pathway with cell survival. SelFi has four steps – the outcomes of
which are illustrated in Fig. 2.

2.3.1. Step 1. Constructing consumption pathways
Using retroProPath, SelFi constructs a set of possible consumption

pathways from the desired product to a metabolite within the cellular
host. Based on the practicality of simultaneous gene insertions, the
pathway length limit is set to 20 (Galanie et al., 2015). While most
cofactors required by the consumption pathways (e.g. H+, O2, CO2,
NAD(P)+, NAD(P)H) are likely native to the host, SelFi constructs
synthesis pathways from the host to the cofactors if needed. To do so,
SelFi first determines if all reactant-side cofactors are native to the

host. If a cofactor is not native, SelFi uses ProPath to construct
synthesis pathways starting with a host metabolite to the cofactor.
Fig. 2 shows an example pathway construction. The blue pathway is
constructed using retroProPath, and provides a consumption pathway
from the desired enzymatic product (green number 2) to a metabolite
within the host (yellow number 1). A supporting pathway (orange)
from a metabolite native to the host (yellow number 2), to a non-native
cofactor on the reactant side of the reaction along the selection pathway
is constructed using ProPath. While this step identifies consumption
pathways, these are not yet high flux selection pathways since a link to
cellular viability is not yet established. The following steps address
these requirements.

2.3.2. Step 2. Eliminating alternate carbon sources
Selection requires linking the enzymatic product to a metabolic

function essential for cell viability. This can be accomplished by forcing
the consumption pathway to be the only cellular carbon source. SelFi
therefore eliminates all organic carbon uptakes except for the uptake
provided through the consumption pathway, and inorganic CO2, an
essential waste product. As a cellular host, E. coli has many carbon
uptakes including D-glucose, D-fructose, D-galactose, D-mannose, D-
xylose, L-arabinose, D-ribose, D-glyceraldehyde, and glycerol. Typically,
the cell utilizes only one such carbon source at a time for growth.
Mathematically, the elimination of carbon uptake by a specific reaction
can be modeled by setting its minimum and maximum operating flux to
zero. In the example provided in Fig. 2, the precursor of the desired
enzymatic product (green number 1) is not native to the host.
Eliminating external carbon sources, marked by red “×”, couples the
consumption pathway (blue) with cell survival.

In some cases, the reactant of the specified enzymatic reaction is
native to the host, and limiting carbon uptake to be only through the
consumption pathway is not possible. Here, an external carbon source
must be provided to keep the cell alive. FBA is used to determine the
external source that maximizes flux through the consumption pathway.
For each carbon source, the consumption pathway flux is maximized
while constraining the biomass production rate to be at least 10%
production of the wild-type maximum biomass rate. Selecting a carbon
source that maximizes the consumption flux does not result in coupling
a consumption pathway with cell survival as the cell is not reliant on
the consumption pathway. This issue is addressed in Step 3.

2.3.3. Step 3. Identifying knockout targets
SelFi seeks one of two goals in this step: coupling the consumption

flux with cell survival, if that is not accomplished in Step 2, and
improving guaranteed non-zero minimum consumption flux. SelFi can
successfully couple the consumption pathway to the host survival in
Step 2 except when the reactant of the given enzymatic reaction is
native to the host. If the reactant is not native, survival and consump-
tion are automatically coupled in the absence of alternate carbon
sources and a minimum non-zero consumption flux is guaranteed in
Step 2. Knockouts can improve this guaranteed minimum consumption
flux. In presence of native reactant for the enzymatic reaction, survival-
consumption coupling is not guaranteed in Step 2. In this case, SelFi
searches for knockout targets in the host to guarantee non-zero
minimum consumption flux to ensure the consumption pathway is
linked to cell survival.

To identify possible knockout targets, SelFi utilizes a sequential
greedy strategy. SelFi explores knocking out one reaction at a time
using FBA to calculate the minimum flux through the consumption
pathway. Among knockout targets that improve the minimum con-
sumption flux, SelFi selects the one that improve the minimum flux the
most. SelFi continues to find an additional knockout target that
improves the flux, repeating this process until the maximum allowed
number of knockouts, as specified by the user, is reached. In this work,
we set the number of knockouts to three to limit the computational cost
associated with evaluating each consumption pathway. Alper and et al.
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used a similar greedy knockout strategy to maximize the production of
lycopene in E. coli (Alper et al., 2005).

2.3.4. Step 4. Ranking selection pathways
For each pathway identified by Steps 1–3, SelFi generates a listing of

reactions in the selection pathway and their corresponding supporting
pathways needed to generate co-factors. SelFi reports the total number of
steps in both the selection and support pathways, and the computed
guaranteed minimum and maximum consumption fluxes before and after
knockouts. SelFi provides all information such that the end user can
explore various options. Ideally, candidate pathways are chosen based on
the guaranteed minimum consumption flux, pathway length, and number
of required knockouts. Shorter, higher-consumption flux pathways with
the smallest number of knockouts are preferable over others.

3. Results

To analyze the effectiveness of our algorithm, we applied SelFi to
several test cases including desired products xylitol, D-ribulose-1,5-bi-
sphosphate, methanol, and aniline that can be potentially synthesized
through the action of engineered enzymes Xylose Reductase (XR),
Phosphoribulokinase (PRK), Methane Monooxygenase (MMO), and
Aromatic Amino acid Decarboxylase (AAD), respectively. We utilized
the genome-scale model of E. coli metabolism (iAF1260) (Feist et al.,
2007) as the host organism. The iAF1260 model constraints were
modified as follows. A constraint is added to ensure that the biomass
flux is equal to or greater than 10% of the maximum biomass flux rate of
the wild type. The lower and upper bounds on oxygen uptake were set to
−1000 and 1000 (mmol/gDCW/h) respectively to allow for aerobic
growth conditions. The lower and upper flux bounds for the engineered
enzymatic reaction were set to 0 and 1000 (mmol/gDCW/h) respectively.
Lower and upper flux bounds of reactions along the added selection
pathways were set to −1000 and 1000 (mmol/gDCW/h), respectively.

3.1. Summary of results

We executed retroProPath for 1000 iterations. Selection pathways
identified by SelFi (after Step 1) are summarized in Table 1. The first
column lists the product of the enzymatic reaction. The second column
lists a label we assigned to each selection pathway. The first letter of the
subscript indicates the product (X for xylitol, D for D-ribulose-1,5-
bisphosphate, M for methanol, and A for aniline), while the second
letter indicates the selection pathway number. The third column lists
the reactions along identified selection pathways. All cofactors along
the pathways are native to the host, thus eliminating the need for
adding synthesis pathways for reactant-side cofactors.

Table 2 summarizes flux characterization results after restricting
carbon uptakes (after Step 2), and after knockouts (after Step 3). The
first column lists the selection pathways by their labels as designated in
Table 1. The second column lists the length of the pathways. The third and
fourth columns list minimum and maximum consumption fluxes before
applying any knockouts. In many cases, the minimum consumption flux is
zero, indicating that the added consumption pathway is not essential for
growth, and that the host must be engineered through knockouts to
couple the consumption pathway with cell survival. The fifth column lists
the number of knockouts identified to improve minimum consumption
fluxes. The two last columns show minimum and maximum consumption
fluxes after applying knockouts. In this work, the knockouts were selected
to provide a minimal guaranteed flux. In each case, after knockouts, the
minimum consumption flux increases whereas the maximum consump-
tion flux decreases. A higher minimum uptake rate will enable selection
for mutants with higher activity. Conversely, a lower minimum guaran-
teed uptake rate will provide a less stringent selection, and for identifica-
tion of mutants with lower activity. Thus, the knockout process provides a
mechanism to place a threshold on minimum desired enzymatic activity.
Table 3 summarizes the consumption demand for metabolites terminating
the selection pathways identified by SelFi. The first column lists the
pathway label, while the second column lists the terminating metabolite.
The following columns report the consumption fluxes calculated using
FBA assuming various desired lower bounds on biomass production,
expressed as a percentage of the maximum biomass production in the
wild type. For each end metabolite except for L-arabinose, the consump-
tion demand remains constant assuming 10–70% minimal biomass
production. L-arabinose drops to 1750 mmol/gDCW/h when assuming
70% or higher minimal biomass production, while 3-dehydro-L-gulonate,
D-ribose 1,5-bisphosphate, formaldehyde and 4-aminobenzoate show no
change across the 10–90% minimal biomass production range. All
consumption demands are relatively high except for two end metabolites.
3-dehydro-L-gulonate is produced from 2 to 3-dioxo-L-gulonate, a meta-
bolite that is not produced by any other reaction in the model. The
consumption demand for 3-dehydro-L-gulonate is thus zero. If 2–3-dioxo-
L-gulonate is supplied to the cell with an uptake rate of 1000 mmol/
gDCW/h, the consumption demand for 3-dehydro-L-gulonate becomes
1000 mmol/gDCW/h assuming 10–70% minimal biomass production,
and 333 mmol/gDCW/h assuming 90% minimal biomass production. In
contrast, metabolite 4-aminobenzoate has low demand and can only be
utilized in relatively small quantities for biomass production.

3.2. Xylose Reductase (XR) and xylitol

Xylitol is used as a low-calorie sweetener or platform chemical for
the production of industrially important chemicals such as glycols

Fig. 2. Illustration of SelFi implementation. The large round circle indicates boundaries of the wild-type E. coli, and the dotted box indicates boundaries of the cell after co-expression of
the selection system. The desired enzyme catalyzes a reactant (green number 1) to a desired product (green number 2). A consumption pathway (blue) from the desired product to a
metabolite (yellow number 1) within the wild-type E. coli is constructed using retroProPath to consume the desired product. A supporting pathway (orange) from a native metabolite
(yellow number 2) in the wild type to a cofactor on the reactant side of a consumption pathway is constructed using ProPath, if needed. An “x” within the cell indicates a knockout, and
an “x” outside the cell indicates eliminating carbon sources. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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(Werpy and Petersen, 2004). Xylitol can be overproduced through an
engineered XR enzyme (Fig. 3) with D-xylose as a reactant and desired
enzymatic product xylitol (Nair and Zhao, 2008). The purpose of
engineered XR, as described by Nair and Zhao (2008), is to engineer
substrate specificity of XR while maintaining its activity toward the
natural substrate, D-xylose.

SelFi identified seven consumption pathways for xylitol as specified
in Tables 1 and 2. The pathways end with D-xylulose, L-arabitol, L-
xylulose 5-phosphate, L-ribulose, L-lyxose, 3-dehydro-L-gulonate, and
glycolaldehyde. D-xylose, the reactant of the enzymatic reaction, is
native to E. coli. SelFi limited all external carbon sources except for D-
xylose. All terminating metabolites have relatively high demand, as per
Table 3, except for 3-dehydro-L-gulonate. However, with D-xylose
uptake, xylitol is converted to L-xylulose, which in turn is converted

to 3-dehydro-L-gulonate, and a maximum consumption flux of
325 mmol/gDCW/h can be achieved prior to knockouts.

SelFi identified the same set of three knockout targets for selection
pathways SPX1 - SPX7. As shown in Table 2, the minimum flux through
the consumption pathways, which is zero mmol/gDCW/h prior to
applying any knockouts, is 110.27 mmol/gDCW/h or higher after
knockouts. The knockouts thus result in coupling the consumption
pathway with cellular growth. Table 4 summarizes reactions identified
by SelFi as knockout targets and their corresponding KEGG identifica-
tion numbers (KEGG IDs). Table 5 presents the order of reactions to be
knocked out and shows the extent to which each knockout improves the
guaranteed minimum consumption flux. The knockout targets identi-
fied by SelFi are shown in Fig. 4, where a solid arrow illustrates a single
reaction, while a dashed line represents multiple reaction steps.

Table 1
Description of identified selection pathways for enzymatic products xylitol, D-ribulose-1,5-bisphosphate, methanol, and aniline.

Desired product Selection pathway label Consumption pathway

For engineering Xylose Reductase
Xylitol SPX1 xylitol+NAD+↔D-xylulose+NADH+H+

Xylitol SPX2 xylitol+NAD(P)+↔L-xylulose+NAD(P)H+H+

L-xylulose+NADH+H+↔L-arabitol+NAD+

L-arabitol+NAD(P)+↔L-arabinose+NAD(P)H+H+

Xylitol SPX3 xylitol+NAD(P)+↔L-xylulose+NAD(P)H+H+

ATP+L-xylulose↔ADP+L-xylulose 5-phosphate
Xylitol SPX4 xylitol+NAD(P)+↔L-xylulose+NAD(P)H+H+

L-xylulose+NADH+H+↔L-arabitol+NAD+

L-arabitol+NAD+↔L-ribulose+NADH+H+

Xylitol SPX5 xylitol+NAD(P)+↔L-xylulose+NAD(P)H+H+

L-xylulose↔L-lyxose
Xylitol SPX6 xylitol+NAD(P)+↔L-xylulose+NAD(P)H+H+

L-xylulose+CO2↔3-dehydro-L-gulonate
Xylitol SPX7 xylitol+NAD(P)+↔L-xylulose+NAD(P)H+H+

ATP+L-xylulose↔ADP+L-xylulose 1-phosphate
L-xylulose 1-phosphate↔glycerone phosphate+glycolaldehyde

For engineering Phosphoribulokinase
D-ribulose-1,5-bisphosphate SPD1 D-ribulose-1,5-bisphosphate↔D-ribose 1,5-bisphosphate
D-ribulose-1,5-bisphosphate SPD2 D-ribulose-1,5-bisphosphate+CO2+H2O↔2 3-phospho-D-glycerate
D-ribulose-1,5-bisphosphate SPD3 D-ribulose-1,5-bisphosphate+O2↔ 3-phospho-D-glycerate+2-phosphoglycolate

For engineering Methane Monooxygenase
Methanol SPM1 methanol+NAD+↔formaldehyde +NADH+H+

Methanol SPM2 methanol+formate↔2 formaldehyde+H2O
Methanol SPM3 methanol+O2↔formaldehyde+H2O2

Methanol SPM4 methanol+H2O2↔formaldehyde+2H2O

For engineering Aromatic Amino Acid Decarboxylase
Aniline SPA aniline+CO2↔4-aminobenzoate

Table 2
Characterizing consumption pathways, showing length of the pathways, minimum and maximum consumption fluxes before applying knockouts, number of identified knockouts and
minimum and maximum consumption fluxes after knockouts, for each selection pathway.

Selection
pathway label

Pathway
length

Minimum consumption
flux before knockouts
(mmol/gDCW/h)

Maximum consumption
flux before knockouts
(mmol/gDCW/h)

Number of
identified
knockouts

Minimum consumption
flux after knockouts
(mmol/gDCW/h)

Maximum consumption
flux after knockouts
(mmol/gDCW/h)

SPX1 1 0 1000 3 111.66 184.09
SPX2 3 0 325 3 111.66 184.09
SPX3 2 0 325 3 111.66 184.09
SPX4 3 0 325 3 111.66 184.09
SPX5 2 0 325 3 111.66 184.09
SPX6 2 0 325 3 111.66 184.09
SPX7 3 0 325 3 110.27 184.46
SPD1 1 0 1000 2 4.23 623.34
SPD2 1 0 847.04 1 3.78 689.08
SPD3 1 0 615.66 1 3.55 500.58
SPM1 1 44.53 726.79 3 117.50 673.76
SPM2 1 47.01 500 3 127.29 500
SPM3 1 60.28 510.44 1 196.18 502.40
SPM4 1 60.38 515.84 2 278.59 502.70
SPA 1 0 0.01 1 0.001 0.01
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Metabolites and reactions native to the host are enclosed in a box,
while non-native ones are placed outside the box. The remaining
figures utilize the same drawing convention. The complete names of
abbreviations used in Fig. 4 (and Figs. 6 and 7) are listed in the
Supplementary file named Abbreviations Table. The first knockout
target R01432 is a reaction that consumes D-xylose (xyl-D) as its
reactant. Knocking out this reaction provides larger amount of D-xylose
to be catalyzed by the engineered enzyme, XR, providing more xylitol to
the host. The second identified knockout target, R00086, is adenosine
triphosphate (ATP) synthesis reaction. With this knockout, the host is
unable to efficiently synthesize ATP via oxidative phosphorylation and
is consequently forced to use more substrate xylitol for generating ATP
via the less-efficient substrate-level phosphorylation, increasing total
xylitol demand for equivalent biomass production. The third identified
knockout target, R01518, is a reaction with reactant 3-phospho-D-
glycerate (3 pg) and product D-glycerate-2-phosphate (2 pg). As shown
in Fig. 4, knocking out this reaction diverts flux towards D-ribulose-5-
phosphate (ru5p-D), which is involved in the production of biomass
precursors. Higher production rates of ru5p-D places demand for more
substrate D-xylulose-5-phosphate (xu5p-D), which results in higher
demand for xylitol, and thus a higher consumption flux.

Among the identified selection pathways, SPX1, is the shortest pathway
with length one. This pathway provides a guaranteed minimum con-
sumption flux equal to 111.66 mmol/gDCW/h after applying the identi-
fied knockouts. Nair and Zhao (Nair and Zhao, 2008) used the same
selection pathway to engineer XR but only applied the first identified
knockout target, R01432, to guarantee a minimum consumption flux.
SelFi identified two additional knockout targets to improve the selection
and more strongly link growth rate to engineered XR activity.

3.3. Phosphoribulokinase (PRK) and D-Ribulose-1,5-bisphosphate

Photosynthetic CO2 fixation is a source of organic carbon and
necessary for carbon sequestration. PRK catalyzes a reaction to

establish the photosynthetic CO2 fixation with D-ribulose-5-phosphate
as a reactant and D-ribulose-1,5-bisphosphate as a product (Cai et al.,

Table 3
Consumption demand flux of end metabolites in mmol/gDCW/h for each selection
pathway, assuming a minimum of 10%, 30%, 50%, 70%, and 90% biomass production
compared to the maximum biomass production of the wild type.

Pathway End
metabolite in
host

Minimum biomass production rate

10% 30% 50% 70% 90%

SPX1 D-xylulose 1000.00 1000.00 1000.00 1000.00 500.00
SPX2 L-arabinose 2000.00 2000.00 2000.00 1750.00 1250.00
SPX3 L-xylulose 5-

phosphate
1000.00 1000.00 1000.00 1000.00 500.00

SPX4 L-ribulose 1000.00 1000.00 1000.00 1000.00 500.00
SPX5 L-lyxose 1000.00 1000.00 1000.00 1000.00 500.00
SPX6 3-dehydro-L-

gulonate
0.00 0.00 0.00 0.00 0.00

SPX7 glycolaldehyde 1000.00 1000.00 1000.00 1000.00 500.33
SPD1 D-ribose 1,5-

bisphosphate
1000.00 1000.00 1000.00 1000.00 1000.00

SPD2-3 3-phospho-D-
glycerate

2000.00 2000.00 2000.00 2000.00 1500.00

SPM1-4 formaldehyde 1000.00 1000.00 1000.00 1000.00 1000.00
SPA 4-

aminobenzoate
0.05 0.05 0.05 0.05 0.05

Fig. 3. Reduction of D-xylose to xylitol by Xylose Reductase (XR).

Table 4
Knockout targets for xylitol test case.

Knockout target reaction KEGG ID

D-xylose[c]a↔D-xylulose[c] R01432
ADP[c]+4.0H+[p]b+Pi[c]↔ATP[c]+H2O[c]+3.0H

+[c] R00086
D-glycerate-2-phosphate[c]↔3-phospho-D-glycerate[c] R01518

a Cytoplasmic localization.
b Periplasmic localization.

Table 5
Effect of knockouts to improve guaranteed minimum consumption fluxes. For each
pathway listed in column 1, we identify knockout targets, and the corresponding
minimum guaranteed flux in parenthesis.

Selection
pathway label

1st Round 2nd Round 3rd Round

SPX1–X6 Δ R01432
(21.80)

Δ R01432, Δ
R00086 (57.66)

Δ R01432, Δ R00086,
Δ R01518 (111.66)

SPX7 Δ R01432
(21.80)

Δ R01432, Δ
R00086 (57.66)

Δ R01432, Δ R00086,
Δ R01518 (110.27)

Fig. 4. R01432, R00086 and R01518 are knockout targets (shown in red). The engineered
enzymatic reaction is colored in green. Knockouts improve the production of xylitol from xyl-
D through the engineered enzymatic reaction. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article).
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2014). The reactant of this enzymatic reaction, D-ribulose-5-phosphate,
is native to the host.

SelFi identified three consumption pathways as shown in Tables 1
and 2 for D-ribulose-1,5-bisphosphate. The consumption pathways end
at D-ribose 1,5-bisphosphate, 3-phospho-D-glycerate, or 2-phosphogly-
colate. SelFi restricts all external carbon sources except glycerol.
Knockout targets that improve the minimum flux through the con-
sumption pathways are summarized in Table 6. Table 7 presents the
order of reactions to knock out and shows the extent to which each
knockout improves the guaranteed minimum consumption flux of D-
ribulose-1,5-bisphosphate. For selection pathway SPD1, SelFi identified
two knockout targets, while only one knockout target was identified for
pathways SPD2 and SPD3. Additional knockouts did not further improve
the flux through the consumption pathways.

Red-labeled reactions in Fig. 5 indicate knockout targets for the
production of D-ribulose-1,5-bisphosphate through the engineered
enzymatic reaction, which is colored in green. The first knockout
target, R01056, is a reaction that consumes D-ribulose-5-phosphate
(ru5p-D), the reactant of the enzymatic reaction. Knocking out this
reaction provides larger amounts of ru5p-D for the engineered PRK
leading to higher production of D-ribulose-1,5-bisphosphate. The
second knockout target, R01067, similarly affects the host as R01067
is part of a pathway consuming ru5p-D.

The selection pathway SPD1 provides the highest guaranteed
minimum flux, 4.23 mmol/gDCW/h, after applying two knockouts.
Among the identified pathways, the pathway from D-ribulose-1,5-
bisphosphate to 3-phospho-D-glycerate was previously experimentally
validated and confirmed in literature by Cai et al. (2014), but used for
selection of a different enzyme – RuBisCO. Since PRK and RuBisCO
catalyze sequential reactions in CO2 fixation, Cai et al. coupled both
reactions to implement their selection.

3.4. Methane Monooxygenase (MMO) and methanol

Conversion of methane to a liquid fuel such as methanol is highly
desirable. While this conversion can be catalyzed by the enzyme MMO
(Basch et al., 1999), Chen et al. have shown that a cytochrome P450
oxidase can also be engineered to catalyze this reaction (Chen et al.,
2012).

SelFi identified four consumption pathways for the methanol test
case as shown in Tables 1 and 2. All identified pathways terminate at
formaldehyde, but utilize different co-substrates and cofactors.
Selection pathways SPM1 and SPM2 use NAD+/NADH cofactors, while

selection pathways SPM3 and SPM4 utilize H2O2 and O2, respectively.
The reactant of the enzymatic reaction, methane, is not native to the
host. Upon restricting all external carbon sources except for methane,
the identified consumption pathways became coupled with host
survival enabling non-zero minimum consumption fluxes shown in
Table 2. In this case, knockouts function solely to improve the non-zero
minimum consumption fluxes. Table 8 shows reactions and their
corresponding KEGG IDs as knockout targets. Table 9 shows the order
of reactions to knock out as determined by SelFi, and the effect of each
knockout has in improving the guaranteed minimum consumption
fluxes.

Fig. 6 illustrates the knockout targets in red. The first knockout
target, R00345, produces oxaloacetate, a metabolite involved in TCA
cycle. The next identified knockout, R09504, is the cytochrome oxidase
reaction, which is coupled with ATP synthesis. Knocking out cyto-
chrome oxidase affects the functionality of ATP synthesis in the cell.
The third identified knockout target, R00112, is NAD(P)+ transhydro-
genase reaction, recycling NAD+, one of the cofactors involved in TCA
cycle. These knockout targets increase the inefficiency in the TCA cycle
and cause decreased ATP generation. Consequently, the host uses more
substrate (methanol) through substrate-level phosphorylation to com-
pensate for degraded ATP generation and meeting the minimal
biomass production constraint. Among the selection pathways, SPM4

has the highest guaranteed minimum consumption flux, 278.59 mmol/
gDCW/h, after applying two knockouts.

3.5. Aromatic Amino Acid Decarboxylase (AADC) and aniline

Aniline is an important precursor for the production of industrial
chemicals such as urethane polymers (Kahl et al., 2000), for which
there is currently no renewable source. We hypothesize that aniline can
potentially be derived via a biosynthetic route from anthranilate, a
native metabolite, using an engineered AADC.

For this test case, SelFi identified one consumption pathway ending
at 4-aminobenzoate, as shown in Tables 1 and 2. SelFi restricted
external carbon sources, leaving D-glucose as the only carbon source for
the host. Before knockouts and as shown in Table 2, the maximum
consumption flux through the identified pathway was low (0.01 mmol/
gDCW/h), while the minimum consumption flux is zero. For this
selection pathway, SelFi identified one knockout target reaction, which
is shown in Table 10 along with the corresponding KEGG ID. The effect
of the identified knockout on improving minimum consumption flux
through SPA is shown in Table 11. The amount of guaranteed minimum
consumption flux after applying the knockout is slightly improved
(0.001 mmol/gDCW/h), while the maximum consumption remains the
same (0.01 mmol/gDCW/h).

The results in Table 3 show the maximum demand of 4-amino-
benzoate to produce biomass is equal to 0.05 mmol/gDCW/h under all
conditions. The low maximum demand for 4-aminobenzoate illustrates
the minimal need for this compound for growth.

In Fig. 7, the knockout target, R05553, is shown in red. R05553 is a
reaction for the synthesis of 4-aminobenzoate (4abz), the end meta-
bolite of the consumption pathway. Knocking out this reaction
eliminates the only alternative pathway to produce 4-aminobenzoate,
forcing the host to rely on the consumption pathway to produce aniline
from anthranilate (anth).

4. Discussion and conclusions

A major bottleneck in directed evolution is the identification of
high-throughput screens or selections to detect the formation of a
desired enzymatic product. The framework presented in this paper
streamlines the process of identifying a cell-based high-throughput
selection strategy for a desirable enzymatic reaction product. SelFi first
identifies biochemical consumption pathways from the desired product
towards the host. Next, SelFi links the consumption pathway with the

Table 6
Knockout targets for D-ribulose-1,5-bisphosphate test case.

Knockout target reaction KEGG ID

D-ribulose-5-phosphate[c]↔D-ribose-5-phosphate[c] R01056
D-erythrose-4-phosphate[c]+D-xylulose-5-phosphate[c]↔D-

fructose-6-phosphate[c]+glyceraldehyde-3-phosphate[c]
R01067

Table 7
Effect of knockouts to improve guaranteed minimum consumption fluxes. For each
pathway listed in column 1, we identify knockout targets, and the corresponding
minimum guaranteed flux in parenthesis.

Selection pathway
label

1st Round 2nd Round 3rd Round

SPD1 Δ R01056
(2.37)

ΔR01056, Δ
R01067(4.23)

–a

SPD2 Δ R01056
(3.78)

–a –a

SPD3 Δ R01056
(3.55)

–a –a

a No further flux-improving knockouts are identified.
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cell growth and enhances the consumption flux by restricting carbon
sources as well as identifying knockout targets in the host. In this work,
SelFi identified up to three knockout targets using a greedy strategy to
increase minimum selection flux. To our knowledge, SelFi is the first
automated methodology to identify selection pathways for enzymatic
activity.

We used SelFi to construct selection pathways for four enzymatic
products. In the case of XR and xylitol, SelFi identified seven selection
pathways, each with length ranging from one to three steps. The
knockout targets were similar in each case, and all seven pathways
attain comparable minimal yield after knockouts (110.27–
111.66 mmol/gDCW/h). The single-step selection pathway and one
of the identified knockouts were previously validated in the literature
(Nair and Zhao, 2008). In the case of PRK and D-ribulose-1,5-bispho-
sphate, SelFi identified three single-step selection pathways. SelFi
identified a common first knockout target amongst the three pathways,
and one additional knockout target for one of the pathways. The
pathway with two knockouts provided the highest guaranteed mini-
mum flux (4.23 mmol/gDCW/h compared to 3.78 mmol/gDCW/h and

3.55 mmol/gDCW/h), and was previously experimentally verified in
the literature as a selection pathway for engineering RuBisCO, the
enzyme catalyzing the rate-limiting step in CO2 fixation, immediately
downstream of PRK (Cai et al., 2014). In the case of MMO and
methanol, SelFi identified four single-step selection pathways with one
to three knockout targets. The pathway with two knockouts provided
over twofold higher minimum selection flux (278.59 mmol/gDCW/h)
compared to the selection pathways with three knockouts
(117.50 mmol/gDCW/h and 127.50 mmol/gDCW/h), and higher mini-
mum selection flux compared to the selection pathway with a single
knockout (196.18 mmol/gDCW/h). In the case of aniline, SelFi identi-
fied one single-step selection pathway ending in 4-aminobenzoate, with
one knockout target. The knockout coupled the selection pathway with
cell survival, but the resulting minimum selection flux (0.001 mmol/
gDCW/h) was low. This result is explained by the low maximum
demand for 4-aminobenzoate in producing biomass under all condi-
tions. Currently, there are no KEGG reactions that allow for creating a
more effective selection pathway for aniline.

Our algorithm utilizes ProPath, a probabilistic traversal algorithm
that was designed to find synthesis pathways from the host to a desired
useful compound. SelFi uses a derivative algorithm, retroProPath, to
find pathways initiating from the desired product and terminating in
the host. Like ProPath, SelFi utilizes reactions only in the KEGG
database to construct pathways, limiting the search space to metabo-
lites and reactions present in KEGG. Using multiple databases would
expand SelFi, making it applicable to a broader range of metabolites
and enzymatic products. This in turn would concurrently increase the
repertoire and diversity of identifiable consumption pathways.

There are other algorithms that search for synthesis or degradation
pathways. One such approach is PathMiner (McShan et al., 2003),
which builds pathways while minimizing biochemical transformation
cost. PathMiner favors reactions involving the addition of smaller
functional groups, which can select against important modifications
such as phosphorylation. OptStrain (Pharkya et al., 2004) is another
pathway synthesis approach where a mixed integer linear program-
ming framework is utilized to combinatorially identify high-yielding
stoichiometrically balanced synthesis pathways by adding or deleting
reactions from a curated database to the host metabolic network.
Another synthesis approach is PathPred (Moriya et al., 2010), which
utilizes transformational patterns derived from RDM patterns (Hattori
et al., 2003) of molecules similar to query molecules to identify
pathways involving molecules not present in the KEGG database.
PathPred is used to identify xenobiotics biodegradation pathways in
bacteria or biosynthesis pathways of secondary metabolites within
plants. SelFi can be extended in a way similar to PathPred to create
selection pathways for molecules not present in databases such as
KEGG.

Fig. 5. Knockout targets R01056 and R01067 are shown in red. Identified knockout targets are connected to D-ribulose-1,5-bisphosphate production. The engineered enzymatic
reaction is colored in green. Knockouts improve the production of D-ribulose1,5-biphosphate from ru5p-D through the engineered enzymatic reaction. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article).

Table 8
Knockout targets for methanol test case.

Knockout target reaction KEGG ID

CO2[c]+H2O[c]+phosphoenolpyruvate[c]→
H+[c]+oxaloacetate[c]+Pi[c]

R00345

4.0H+[c]+0.5 O2[c]+ubiquinol-8[c]→
H2O[c]+4.0H

+[p]+ubiquinone-8[c]
R09504

2.0H+[p]+NADH[c]+NADP+[c]→2.0H+[c]+NAD+[c]+NADPH[c] R00112

Table 9
Effect of knockouts to improve guaranteed minimum consumption fluxes. For each
pathway listed in column 1, we identify knockout targets, and the corresponding
minimum guaranteed flux in parenthesis.

Selection
pathway label

1st Round 2nd Round 3rd Round

SPM1 Δ R00345
(72.16)

Δ R00345, Δ
R09504 (98.79)

Δ R00345, Δ R09504,
Δ R00112 (117.50)

SPM2 Δ R00345
(76.17)

Δ R00345, Δ
R09504 (107.03)

Δ R00345, Δ R09504,
Δ R00112 (127.29)

SPM3 Δ R00112
(196.18)

–a –a

SPM4 Δ R00112
(200.52)

Δ R00112, Δ
R00345 (278.59)

–a

a No further flux-improving knockouts are identified.
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SelFi aims to improve the guaranteed minimum selection flux while
meeting a lower bound constraint on cell growth. A non-zero minimum
consumption flux guarantees that the cell will utilize this pathway – a
goal that can not necessarily be met by maximizing the selection flux.
This focus on minimum flux optimization differentiates SelFi from
prior knockout identification works that aim to maximize target
production rates. For example, techniques such Optknock (Burgard
et al., 2003), MOMAKnock (Ren et al., 2013), OptGene (Patil et al.,
2005) and OptORF (Kim and Reed, 2010), OptReg (Pharkya and
Maranas, 2006), FSEOF (Choi et al., 2010), OptForce (Ranganathan
et al., 2010), CosMos (Cotten and Reed, 2013), CCOpt (Yousofshahi
et al., 2013a), FastPros (Ohno et al., 2014), and RobOKoD (Stanford
et al., 2015) aim to increase target production via gene up/down over
expression or knockout. Many approaches are mathematically elegant
utilizing bi-level programing (e.g., Optknock (Burgard et al., 2003),
MOMAKnock (Ren et al., 2013)) or identifying required coordinated
changes among reactions (e.g., OptForce (Ranganathan et al., 2010),

Fig. 6. Knockout targets R00345, R09504, R00112 are shown in red. The engineered enzymatic reaction is colored in green. Identified knockouts improve the minimum production and
consequently consumption of methanol through the engineered enzymatic reaction with methane as a precursor. Methane is not native to the host. All knockout targets affect the
efficiency of the host in ATP generation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Table 10
Knockout target for aniline test case.

Knockout target reaction KEGG ID

4-amino-4-deoxychorismate[c]→4-
aminobenzoate[c]+H+[c]+pyruvate[c]

R05553

Table 11
Effect of knockout to improve guaranteed minimum consumption flux. For the pathway
listed in column 1, we identify knockout targets, and the corresponding minimum
guaranteed flux in parenthesis.

Selection pathway label 1st Round 2nd Round 3rd Round

SPA Δ R05553(0.001) –a –a

a No further flux-improving knockouts are identified.

Fig. 7. Knockout target R05553 is shown in red. The engineered enzymatic reaction is colored in green. The knockout target guarantees production of aniline from anth through the
engineered enzymatic reaction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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CosMos (Cotten and Reed, 2013)), we selected a simple greedy
knockout heuristic to guarantee minimum yield. This strategy is
optimal in selecting each successive knockout, and is shown effective
in identifying effective knockout strategies.

To couple a consumption pathway to host survival, SelFi restricts
alternate carbon sources and identifies possible knockout targets.
While this coupling method guarantees a minimum non-zero flux
through the consumption pathway, the maximum flux through the
identified pathway is dependent on the demand of the terminal host
metabolite for cell growth. A viable consumption pathway must end
at a metabolite with high-demand for biomass production.
Alternatively, the cell must be engineered to change such demand.
We developed in this paper a new methodology to evaluate such
demand. We showed that the maximum flux potential of selection
pathways correlates with cellular demand of the metabolites at
which the pathways terminate. In particular, the limited demand
of end metabolite 4-aminobenzoate for biomass production
(0.05 mmol/gDCW/h) explains the low flux rate for the aniline
consumption pathway. Cellular engineering utilizing knockouts did
not result in increased consumption flux as the knockouts aimed to
increase the guaranteed minimum flux. Using screens may be more
desirable in such cases.

The host model utilized by SelFi impacts the quantity and quality
of the identified selection pathways. Anecdotes within the commu-
nity show that models released in the public domain often have
undocumented inconsistencies, such as dead-end metabolites or
reactions incapable of carrying fluxes. Model and constraint con-
sistency checkers such as MC3 (Yousofshahi et al., 2013b) can detect
some issues such as singly connected metabolites, as was the case for
2–3-dioxo-L-gulonate where zero consumption demand was re-
ported. There are other issues, however, that cannot be detected
automatically. In the iAF1260 model, L-xylulose is listed as a native
metabolite in E. coli. Although this metabolite was present in the
iAF1260 model, L-xylulose cannot metabolize in E. coli (Sánchez
et al., 1994). To take this issue into account, we excluded L-xylulose
as a native metabolite, thus preventing the generation of selection
pathways that end at this metabolite for the xylitol test case, and
allowing for pathways SPX1–SPX7 that utilize L-xylulose as an
intermediate.
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