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Abstract

Motivation: The complete characterization of enzymatic activities between molecules remains incomplete,
hindering biological engineering and limiting biological discovery. We develop in this work a technique,
Enzymatic Link Prediction (ELP), for predicting the likelihood of an enzymatic transformation between
two molecules. ELP models enzymatic reactions catalogued in the KEGG database as a graph. ELP is
innovative over prior works in using graph embedding to learn molecular representations that capture not
only molecular and enzymatic attributes but also graph connectivity.

Results: We explore transductive (test nodes included in the training graph) and inductive (test nodes
not part of the training graph) learning models. We show that ELP achieves high AUC when learning
node embeddings using both graph connectivity and node attributes. Further, we show that graph
embedding improves link prediction by 30% in AUC over fingerprint-based similarity approaches and by
8% over Support Vector Machines. We compare ELP against rule-based methods. We also evaluate
ELP for predicting links in pathway maps and for reconstruction of edges in reaction networks of four
common gut microbiota phyla: actinobacteria, bacteroidetes, firmicutes and proteobacteria. To emphasize
the importance of graph embedding in the context of biochemical networks, we illustrate how graph
embedding can guide visualization.

Availability: The code and datasets are available through https://github.com/HassounLab/ELP

Contact: liping@cs.tufts.edu,soha@cs.tufts.edu

1 Introduction 2019), thus limiting our ability to analyze host-microbiota interactions.

Characterizing enzymes through sequencing, annotation, and homology Importantly, most enzymes if not all are promiscuous, acting on substrates

has enabled the creation of complex system models that have played
a critical role in advancing many biomedical and bioengineering

other than the enzymes’ natural substrates (Hult and Berglund, 2007;
Khersonsky and Tawfik, 2010). At least one-third of protein superfamilies

applications. Tnsufficient characterization of enzymes, however, are functionally diverse, each superfamily catalyzing multiple reactions

fundamentally limits our understanding of metabolism and creates
knowledge gaps across many applications. For example, while nearly

(Almonacid and Babbitt, 2011). Despite progress in functional annotation,
the complete characterization or curation of enzyme function and the

300 B-glucuronidases (gut-bacterial enzymes that hydrolyze glucuronate- reactions they catalyze remains elusive. Computational prediction of

containing polysaccharides such as heparin and hyaluronate as well
as small-molecule drug glucuronides) have been cataloged, functional

enzymatic transformations promises to complement existing databases and
provide new opportunities for biological discovery.

information is available for only a small fraction (<10%) (Pellock et al., A common p.re(~ilct.0r of enzymejco.mp ound mteractlo‘n 18 cor.npound
and/or enzyme similarity to those within known enzymatic reactions. In

biological engineering, molecular similarity between a query molecule
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and native substrates that are known to be catalyzed by the enzyme
inform putative enzymatic transformations (Pertusi et al., 2014). A
high similarity score indicates a likely transformation. In drug-protein
interaction analysis, molecular similarity and machine learning are utilized
to predict the likelihood of interactions (Kurgan and Wang, 2018). Some
techniques quantify similarity between reactions. EC-BLAST quantifies
similarities between enzymatic reactions based on the similarities of bond
changes, reaction centers, and substrates and products (Rahman et al.,
2014). SimCAL computes reaction similarity at different levels such as the
transformation region between substrates and products, or the similarity
across all products-substrates within a reaction (Sivakumar et al., 2018).

In addition to predicting aspects of enzymatic reaction similarities,
there are rule-based methods to predict products of promiscuous reactions.
Typically, such rules specify how a substrate molecule can be transformed
to a product molecule. The rules can be hand-curated based on common
biotransformations (Morreel et al., 2014; Li et al., 2004), extracted from
existing sources, e.g., the KEGG RPAIR (Kotera et al., 2004) RCLASS
database (Kotera et al., 2014b), or automatically extracted from reactions
(Sivakumar et al., 2016). As each rule is associated with a particular set
of reactions, the presence of a rule directly correlates with the ability of
predicting its associated enzymatic transformations.

In this paper, we address the problem of predicting enzymatic
transformations (links) between two molecules, a problem known as “link
prediction”, where a link is a connection between two nodes within a
network graph (Liben-Nowell and Kleinberg, 2007). Earlier work used the
Tanimoto coefficient to score the maximum common substructure (MCS)
between two molecules (Kotera et al., 2008). Citing the computational
inefficiency of MCS, an NP-hard problem, Kotera et al. (2013b, 2014a)
utilized Support Vector Machines (SVMs) to predict such links. Compound
pairs in the KEGG RPAIR data were used as positive examples, while
unknown interactions between compound pairs were utilized as negative
examples. Feature vectors were constructed using either common or
differential features based on various fingerprints. The use of SVMs
along with additional substructures in the format of KCF-S (KEGG
Chemical Function (KCF)-and-Substructures) (Kotera et al., 2013a) and
of aligned molecular graphs (Yamanishi et al., 2015) further improved
link prediction. Tabei ef al. (2016) utilized joint-learning classifiers for
link prediction and for predicting enzyme orthologs that could catalyze
predicted transformations between compound pairs.

‘We present in this paper a novel technique, Enzymatic Link Prediction
(ELP), for predicting enzymatic transformations between two molecules.
ELP advances over the state-of-the art in two ways. First, ELP maps
known enzymatic reactions already catalogued in databases (here, the
KEGG database (Kanehisa and Goto, 2000)) to a graph structure, where
compounds are represented as graph nodes while reactions are represented
as graph edges. While snippets of such graph structures have been
previously utilized as training data for multi-step pathway reconstruction
(Kotera et al., 2014a) and exploited during synthesis pathway construction
(Yousofshahi et al., 2011), ELP utilizes all graph connectivity when
predicting enzymatic links. Second, ELP uses graph embeddings (Goyal
and Ferrara, 2018; Cai et al., 2018) to learn molecular representations
that reflect not only molecular structural properties but also relationships
with other molecules in the network graph. Such embeddings have
proven effective in predicting missing information, identifying spurious
interactions, predicting links appearing in future evolving network, and
analyzing biomedical networks (Goyal and Ferrara, 2018; Cai et al., 2018;
Yue et al., 2019). We analyze both transductive (test nodes included in the
training graph) and inductive (test nodes not part of the training graph)
models. We evaluate ELP when learning node embeddings using both
graph connectivity and node attributes and compare to similarity-based
approaches.
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Fig. 1: ELP Overview. (A) Molecular representations are learned using
graph embedding. (B) Learned embeddings are used to predict links.

2 Methods
2.1 Constructing Graph From the KEGG Database

While proteins can interact with other proteins, the focus of this paper
is on enzymatic transformations between small molecules (those with
masses less than 1000 Daltons). Such transformations form the backbone
of metabolic networks. The KEGG database catalogues such enzymatic
reactions and can be used to construct a data graph. Molecules in the
KEGG database are represented as nodes. Each substrate-product pair
within a reaction is modeled as an edge in the graph. As most KEGG
reactions are reversible, we construct a non-directional graph. Biochemical
networks have cofactor molecules (e.g., NADP, H,O) that participate in
many reactions, forming high-connectivity hub nodes within the graph
(Ravasz et al., 2002). As we aim to predict connectivity between non-
cofactor metabolites, such high-connectivity nodes and their edges are
excluded from the graph.

Nodes are assigned molecular fingerprints as attributes. The
fingerprints are encoded as binary vectors of fixed length K. We select two
fingerprints that reflect the presence or absence of pre-defined structural
molecular fragments: the MACCS fingerprint with K = 166 structural
keys (Durant et al., 2002), and the PubChem fingerprint with K = 881
structural keys (Kim et al., 2015).

Enzymatic reaction data is assigned as edge attributes. Each edge
is assigned the enzyme commission (EC) number that catalyzes the
associated chemical reaction. EC numbers are represented as four numbers
separated by periods (e.g., L-lactate dehydrogenase is assigned EC number
1.1.1.27). Each edge is also assigned an RCLASS label (Kotera et al.,
2014b), 5 digit label. Each such label is associated with a group of reactions
that share the same localized structural change between a substrate and a
product (e.g., the addition or removal of a hydroxyl group). Although a
reaction may be associated with one or more RC labels, each substrate-
product pair is associated with only one RC label. If a reaction has no
label, we assign it a null label. Thus, each edge in the graph is associated
with an EC label and a RC label. A graph G = (V, E) therefore consists
of a set of vertices V' and a set of edges E. Every node ¢ € V represents
a molecule and every edge (4,7) € F for some (z,j) € V represents an
enzymatic reaction connecting two molecules % and j.

2.2 The ELP method

ELP has two steps (Figure 1): (A) learning embedding vectors of
graph nodes, and (B) predicting interaction between a pair of nodes
from their embedding vectors. Embeddings are low-dimensional vector
representations of each node. An embedding is characteristically similar
to molecular fingerprint in the sense that they both quantitatively describe
the molecules. Unlike fingerprints, however, entries in an embedding
vector cannot be directly interpreted, but rather can be decoded by a
suitable learning algorithm. Importantly, embeddings capture the inherent
structure of the graph as well as attributes of the nodes and edges in the
graph, which allow them to be used as input for downstream tasks such
as link prediction. For the first step, we use the Embedding Propagation
(EP) algorithm (Duran and Niepert, 2017). EP was selected because it
almost consistently outperformed several other methods in the presence
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of node attributes on several datasets. Further, EP has the advantage of
fewer parameters and hyperparameters when compared to other methods
(e.g., (Perozzi et al., 2014; Tang et al., 2015; Grover and Leskovec, 2016)).
For the second step, we train a neural network that takes pairs of learned
embedding vectors as input and predicts the connectivity of two molecules.

2.2.1 Connectivity-based Learned Embeddings

The simplest form of EP is to learn a set of node embedding vectors
U = {u; € R?: i € V}, where d is the embedding size. Embeddings
are randomly initialized prior to training. Node embeddings are learned via
an iterative process, by propagating forward (representations of nodes) and
backward (gradients) messages between neighboring nodes. The iterative
process repeats until a convergence threshold is reached. Suppose N (i) =
{j € V : (i,5) € E}isthesetof neighboring nodes of node ¢. The model
aims to reconstruct embeddings u; from the embeddings of 7’s neighbors.
The reconstructed node embedding u; for node % is:

- 1

JEN (i)

The learning objective of EP is to maximize the similarly between
u; and u;. Instead of maximizing the absolute values of inner products
for all such nodes, EP maximizes their values in a relative sense: the
reconstruction should be more similar to the corresponding embedding
vector than any other embedding vectors. The error in reconstruction
is therefore minimized through a margin-based ranking loss (Duran and
Niepert, 2017):

C:Z Z max{'y—ﬁ:ui—l—ﬁ;uj,O}, 2)

i€V jEV,j#i

where v > 0 is a chosen margin hyperparameter. The objective is
optimized by stochastic gradient descent. However, summing over all
nodes as indicated by the inner sum is very expensive. For performance,
we randomly select one node as the negative example for each real node
in every iteration to compute an estimation of £ and its gradient, as was
done in (Duran and Niepert, 2017).

2.2.2 Attribute-based Learned Embeddings

To incorporate information from edge attributes, EP learns embedding
vectors Z = {z. € Ri:c=1,..., C'} for the C reaction labels. The
reconstructed node embedding u; for node 4 is modified as follows:

- 1
u; = m Z uj + &z ), 3
JEN(9)

where 7; 5, is the edge label of the edge (¢,j) and zr(4,j) is the
corresponding edge embedding. The hyperparameter « € {0, 1} weights
the importance of edge features. The vector zg corresponding to null edge
attributes is fixed to zero to avoid affecting the reconstruction. Embeddings
based on edge-attributes can be learned simultaneously while learning
connectivity-based embeddings. While the edge embeddings are used
during training, they are not used to compute the final embeddings of
nodes after EP training.

EP can also learn K fingerprint embedding vectors V = {vy, € R? :
k=1,..., K}. Specifically, the node-attribute-based embedding u; of a
node ¢ is the mean of fingerprint embeddings v, corresponding to positive
fingerprint entries in the fingerprint vector f; € {0, 1}%:

1 K
fp
u’ = E fikVi “4)
Sh_y fik =1

When computing embeddings based on node-attributes we optimize the
fingerprint embeddings V, instead of U, through the learning objective in

Eq. (2). An advantage of the EP algorithm is its ability to learn only one of
the node embedding types or all. If both node-attributes and connectivity
embeddings are trained, we simply concatenate u; and u{ P to form the
final node embedding vector of node ¢ before applying the link prediction
model. L2 regularization is applied to all variables U, V and Z.

2.2.3 Link Prediction

The trained node embeddings are used as inputs to a logistics link
prediction model. Pairs of embeddings of nodes involved in a known
reaction are positive examples; pairs of embeddings of nodes that have
no or unknown interaction are treated as negative examples. To make link
predictions, the neural network outputs the likelihood of an edge for every
pair of input node embeddings. The final result of the model is evaluated
based on the Area Under Curve (AUC) metric, wherein the false positive
rate and true positive rate are evaluated at every threshold to compute the
area under the Receiver Operating Characteristic (ROC) curve.

2.3 Training and Testing

We explore two learning scenarios — transductive and inductive — that we
apply to ELP and our baseline methods. In the transductive setting, we
train on all available nodes and evaluate the edge recovery for a set of
test edges that were withheld from training. Hence, the graph is split into
training and testing sets by partitioning on the edges. During training, all
non-training edges are considered negative examples, including those that
are test edges. During testing, we evaluate the AUC using the withheld test
edges as positive examples and an equal-sized sample of the negative edges
as the negative examples. In the inductive scenario, the model predicts
interactions for out-of-sample nodes excluded from the training set. In
the case of ELP, we compute embeddings for out-of-sample nodes from
their attributes and predict possible enzymatic reactions for them. Due to
the lack of prior connectivity information for out-of-sample nodes, only
embeddings based solely on node-attributes are learned during training for
the ELP method. To generate the training and testing sets, we reserve a
certain portion of nodes and their incident edges for the test graph. All
other nodes and edges are included in the training graph. Similar to the
evaluation of the transductive learning scenario, we sample a set of negative
edges equal in size with the test edges.

For all experiments, the embedding dimension is set to 128. The
learning rate for the EP framework is set to 0.01, the regularization to
0.0002, and the v margin is set to 10. The embedding vectors are trained
batch size of 2048 for 500 epochs or until convergence, whichever one
comes earliest. The deep neural network decoder predicts the connectivity
of two molecules based on their embeddings consists of two hidden layers
of sizes 32 and 16. It is trained for 40 epochs on a batch size of 2048 with
a learning rate of 0.01. The margin hyperparameter v > is set to 10. In
experiments using edge features, « is set to 1.

3 Results

Once cofactors were excluded, and MACCS and PubChem fingerprints
were generated for all our nodes, our dataset representing the biochemical
network underlying the KEGG database consisted of 7049 nodes and
12507 edges, with an average node degree of 3.5. We evaluate both
scenarios and all techniques using 5-fold cross validation.

3.1 Transductive Link Prediction

Results for several transductive scenarios are reported (Table 1, partitions
(A)-(D)). When performing connectivity-based prediction (partition A),
we compare ELP against different variants of node2vec (Grover and
Leskovec, 2016), an algorithm for learning node embeddings based on
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Table 1. Link prediction results for the transductive learning scenario.

Connec-  Finger- Enzyme

Model tivity print Label AUC
A. Connectivity Only
node2vec (default) Yes - - 0.80 £+ .011
node2vec (short walks) Yes - - 0.83 £ .020
node2vec (DFS) Yes - - 0.75 £ .152
node2vec (BFS) Yes - - 0.83 £+ .004
ELP Yes - - 0.88 £+ .003
B. Fingerprints Only
Jaccard No MACCS - 0.67 £+ .006
Jaccard No PubChem - 0.65 £ .006
L2SVM No MACCS - 0.89 £ .002
ELP No MACCS - 0.93 + .004
ELP No PubChem - 0.93 £ .002
C. Connectivity and Fingerprint
ELP Yes MACCS - 0.97 £ .003
ELP Yes PubChem - 0.97 + .001
D. Connectivity, Fingerprint, and Enzyme Labels
ELP Yes MACCS EC 0.97 + .001
ELP Yes PubChem RC 0.97 £.001

AUC results and standard deviations obtained using 5-fold cross validation.
We partitioned the experiments to facilitate comparisons. (A) Using only
network connectivity to learn embeddings. (B) Using only MACCS or
Pubchem fingerprints. ELP still uses network connectivity to indirectly
learn fingerprint embeddings. (C) Using both network connectivity and
fingerprints. (D) Using network connectivity, fingerprints and enzyme
labels.

random walks of the graph. Node2vec maximizes the probability of
occurrence of nearby nodes in fixed-length random walks, thus preserving
higher-order proximity between nodes. The characteristics of the random
walks can be specified using the return (backtrack) parameter p, the in-
out parameter g, the length of the walks [ and the context window k,
which controls for the neighborhood of nodes considered as nearby. The
embedding dimension of node2vec is fixed to be the same as the one used
in ELP. We compare ELP to several node2vec variants. The first variant
(default) is the node2vec model with default parameters p = 1, ¢ = 1,
I = 80, and k = 10; the second variant (short walks) reduces the length
of the walk to 10 and the context size to 5. Based on the improvement in
AUC from 0.80 to 0.82 using shorter walks, we fix | = 10 and k£ = 5 and
explore the differences between a DFS-style random walk and a BFS-style
random walk, which is defined asp = 1,¢q = 0.5andp = 1,q = 2,
respectively. We found a DFS-style random walk led to poorer results
(0.75 AUC) but a BFS-style random walk gave the best node2vec result
(0.83 AUC), suggesting that localized neighborhoods are more effective in
learning node representations than larger neighborhoods. In contrast, ELP,
which explicitly considers only the immediate neighbors of every node,
outperforms all node2vec variants with an AUC of 0.88.

Partition (B) explores the effects of using only the MACCS or
PubChem fingerprints without utilizing graph-connectivity embeddings.
As a baseline, we apply the Jaccard similarity model on the fingerprints
of every substrate-product pair in the test set. The Jaccard AUC results
are 0.67 using MACCS and 0.65 using PubChem. Another baseline
for this partition, denoted L2SVM, is a link prediction model similar
to Kotera er al. (2013b) based on molecular fingerprints. It uses the
similarities and differences between the two fingerprints of a given pair
of molecules as inputs to an SVM. We chose the L2-regularized SVM as
it was the best performing model in Kotera et al. (2013b). The original
model proposed by Kotera et al. (2013b) uses reactant pairs based on

1.0 —
0.8 1 /"/’
' /." .+ Random
O 6 | Py "“ y =X
o 007
& __ .. Connectivity only
0.4 1 AUC 0.89

Connectivity and

0.2 7 o MACCS fingerprint
AUC 0.97
001 : : :
0.00 0.25 0.50 0.75 1.00
FPR

Fig. 2: ROC curve plot for transductive learning with and without MACCS
fingerprint as node attributes.

Table 2. Link prediction results for the inductive
learning scenario.

Model Connectivity Fingerprint AUC

Jaccard No MACCS 0.68 £ 0.004
Jaccard No Pubchem 0.67 4+ 0.014
ELP No MACCS 0.93 £+ 0.005
ELP No Pubchem 0.94 £ 0.005

The AUC results and the standard deviations obtained using 5 random
sample of held-out test nodes (5% of all nodes). All models are tested on
recovering edges incident to the test nodes.

an earlier definition of “main” type transformations that was present in
the RPAIR database within KEGG (Kotera e al., 2013b). To facilitate a
meaningful comparison, we apply Kotera et al. (2013b)’s model directly
on our described network, maintaining the assumption that all substrate-
product pairs are reversible. Using L2SVM on the MACCS fingerprints
yields a mean AUC of 0.89. L2SVM requires significant compute time
and memory to process all possible ordered pairs of molecules. As such,
the experiment using L2SVM on the PubChem fingerprints required over
1 terabyte of memory on a CPU Processor. The experiment could not be
completed using our available resources. As for the ELP model, both the
MACCS and PubChem fingerprints achieve a mean AUC of 0.93. Using
ELP with MACCS fingerprints leads to slightly larger variabilities (+.002
std) across 5-fold cross validation than with the PubChem fingerprints.

Per partition (C), using a combination of both connectivity information
and fingerprint attributes with ELP yields the best results, with both
MACCS and PubChem fingerprints achieving an AUC of 0.97. We
see again that the MACCS fingerprints lead to 0.002 more variation in
terms of standard deviation, but the computational advantages of using
MACCS fingerprints is its smaller size (K = 166) compared to PubChem
fingerprints (X' = 881). In Partition (D) we incorporate enzyme labels as
edge labels. This addition does little to enhance predictive accuracy but
decreases the standard deviation, indicating that the inclusion of enzyme
labels leads to more stable results. There is little difference in AUC when
utilizing the two enzyme labels.

Figure 2 presents plots for two scenarios using ELP: (A) connectivity
only and (B) connectivity with MACCS fingerprints as node attributes. The
plot reveals that the lower AUC performance is mostly attributed to having
a higher FPR when there is a higher TPR. In other words, we can achieve
an almost .50 TPR at little cost (little sacrifice in FPR), but as the need to
observe improvement in TPR increases, the FPR rises dramatically.
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Fig. 3: AUC results using the ELP model for each pathway within each
pathway group, shown for various functional pathway groups. The size of
each marker is proportional to the number of edges being tested for each
pathway.
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by pathway groups and the size of each marker is proportional to the
number of edges being tested.

3.2 Inductive Link Prediction

Several inductive scenarios were investigated (Table 2). In these scenarios,
5% of all nodes were removed from the graph during training. ELP based
on MACCS node attributes achieves an AUC of 0.93 and ELP based on
PubChem node attributes achieves an AUC of 0.94. This performance
is nearly identical to ELP’s performance in the transductive learning
scenarios, wherein an AUC of 0.93 is achieved using either MACCS or
PubChem fingerprints. Despite the out-of-sample nodes in the test set
not being part of the training graph, ELP robustly leveraged fingerprint
information for nodes within the training graph to achieve higher AUC.
Similarity analyses based on the Jaccard similarity scores are much lower,
with 0.68 and 0.67 AUCs for MACCS and PubChem, respectively.

3.3 Pathway Reconstruction

To evaluate how ELP recovers links within metabolic pathways, we
reconstruct pathway edges that are omitted during training. We select the
same set of pathway groups that was used in Kotera et al. (2013b). For

Table 3. Organism reconstruction result (mean AUC scores and
the standard deviation) for each phylum. Each phylum is repeated
5 times, each with 5 different random samples of 1024 test edges.

Phylum # Test Edges  Jaccard AUC ELP AUC
Proteobacteria 4982 0.77 +0.007 0.89 £ 0.001
Firmicutes 5454 0.77 &£ 0.010 0.91 £ 0.004
Bacteroidetes 3674 0.76 + 0.009 0.90 £ 0.005
Actinobacteria 5968 0.77 +0.010 0.91 £+ 0.001

3103
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0 250 500 750 1000 1250
# Associated Edges

Fig. 5: Histogram distribution of the number of graph edges associated
with reactions in each RCLASS.

each pathway, we reserve its edges as the test graph and use an equal-size
random sample of negative edges in the test graph. We evaluate the ability
of the ELP model with the MACCS fingerprints to recover edges within
each individual pathway.

We illustrate our results in Figures 3 and 4. Similar to earlier findings
Kotera et al. (2013b), the results for individual pathways are overall lower
than a random 5-fold split (Figure 3), with a mean AUC of 0.88. The
results for the glycan biosynthesis and metabolism pathway group spans
a wide range from 0.5 (same as pure chance) to 1 (perfect prediction).
The variability is due to the small number of edges within these pathways,
where some have as little as 2 true edges. In general, there is little difference
in the reconstruction of different pathway maps using ELP. To further
benchmark our results, we applied the Jaccard similarity scoring on the
same task. Figure 4 shows that our results are almost always better than
results given by Jaccard scores (above the x = y line).

3.4 Organism Reconstruction

We assess how ELP recovers enzymatic reactions at the organism level. We
explore link reconstruction for four gut microbiota phyla: actinobacteria,
bacteroidetes, firmicutes and proteobacteria Rinninella et al. (2019).
For each phyla, we retrieved available corresponding organisms from
the KEGG database. Due to the high number of affiliated edges for
each phylum (Table 3) and the conservation of metabolism across many
organisms, we tested link construction for a large subset of such edges.
We test the reconstruction of 1024 randomly sampled edges per phylum.
We report the average AUC and standard deviation across five 1024-edge
reconstructions for each phylum using the Jaccard similarity model and
the ELP model with MACCS fingerprints. For all phyla, the Jaccard
similarity model consistently yields AUCs between 0.76 to 0.77 with
standard deviations around 0.01. The ELP model achieves higher AUCS
ranging between 0.89 to 0.91, and the results show smaller variations.

3.5 Rule Reconstruction

In contrast to a data-driven machine learning framework like ELP, rule-
based models (e.g. PROXIMAL (Yousofshahi et al., 2015) and ReactPred
(Sivakumar et al., 2016)) rely on transformation rules. The accuracy of
rule-based methods depends entirely on the availability of transformation
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Table 4. Rule reconstruction results of the top 20 rules Graph Connectivity Only
with the most number of associated test edges. r
15 7 g Phosphate
Rule # Test Edges Jaccard AUC ELP AUC Degree 460
Diphosphate
RC00003 1364 0.79 0.95 10 1 ® Degree 398 e
RC00006 565 0.74 0.89 Carbon Dioxide ®
Degree 545
RC00392 550 0.66 0.93 5
RC00049 438 0.74 0.82 Glycolysis /
RCO00014 279 0.40 0.76 (.‘ Gluconeogenesis
RC00171 210 0.61 0.75 07 Y Citrate cycle
RC00021 207 0.77 0.79 oo . J‘Zﬁ‘t‘ cycle)
RC00041 205 071 0.77 _s 1 . LI i . :
RC00010 171 0.58 0.82 -10 -5 0 5 10 15 20
RC00055 169 0.71 0.77 Connectivity and MACCS Fingerprints
RC00020 152 0.71 0.83 15 {"¢ Phosphate
RC00046 141 0.80 0.86 Degree 460
RC00062 136 0.67 0.87 10
RCO00008 124 0.62 0.76 Diphasohat Carbon Dioxide
iphosphate Degree 545
RC00279 121 0.14 0.69 L] Degree 398 9
RC00460 102 0.66 0.90 5
RC00523 101 0.62 0.79 °
RC00466 92 0.64 0.93 o .g‘ .
RC00059 89 0.76 0.83 e e e
O] °
RC00661 81 0.60 0.85 e©@ o
-5 T T T T T
-5 0 5 10 15

rules and the ability to apply such rules to query substrate molecules. We
design a rule reconstruction experiment with the goal of evaluating how
ELP recover edges associated with the most prevalent rules.

To this end, we compile a list of reaction rules (RCLASSES) in the
KEGG database. Given that cofactors were not included in our graph, we
remove RLCASSES associated with cofactors, which accounts for less
than 5% of allRCLASSES. Foreach RCLASS, we find the list of associated
graph edges through all reactions linked to the RCLASS. Figure 5 depicts
the distribution of the number of associated edges of RCLASSES. We
observe that the distribution is heavy-tailed, where the majority of rules
have very few associated edges, and a few rules have many associated
edges. To test the reconstruction of one rule, we hide all of its associated
edges and train on the rest of the edges using the ELP model with the
MACCS fingerprints. Similar to previous testing frameworks, we evaluate
the reconstruction of the associated edges against a randomly sampled set
of negative edges of equal size. We evaluate ELP’s performance when
hiding the top 20 most popular RCLASSES, one RCLASS at a time.

We report our ELP results along with the Jaccard similarity scoring
results as a baseline comparison (Table 4). The AUC results over the top 20
RCLASSES using the Jaccard similarity have a mean of 0.65 and standard
deviation of 0.15. In contrast, the results using ELP are higher and vary
considerably less with a mean and standard deviation of 0.83 and 0.07,
respectively. The AUC results using ELP are consistently above 0.75,
with the exception of RC00279 (0.69). This RCLASS is associated with
enzymes with E.C. numbers 2.5.1.* and denotes the transfer of alkyl or aryl
groups other than methyl groups. All edges in the KEGG graph associated
with this RCLASS involve isopentenyl diphosphate and a larger molecule,
resulting in low similarity between substrate and product. This RCLASS
therefore presents an ostensibly difficult rule to predict, as demonstrated by
its Jaccard AUC of 0.14. Importantly, ELP performance is not negatively
impacted by the prevalence of rules. This result shows that even with the
lack of certain rules all together, ELP is successful at recovering missing
reactions and its performance is stable, suggesting that ELP is a promising
framework in place of rule-based prediction models that completely fail
to recover missing reactions if the relevant rule is not considered.

Fig. 6: 2D TSNE (Maaten and Hinton, 2008) visualization of embeddings
for two transductive scenarios using ELP. Top: using graph connectivity
only. Bottom: using both graph connectivity and MACCS fingerprints.

3.6 Biochemical Network Visualization

To further illustrate the importance of graph embedding in the context
of biochemical networks, we show how graph embedding can be used
for visualization. Figure 6 presents a visualization of the embeddings
for two reference pathways, the citrate cycle (TCA) cycle, and
Glycolysis/Gluconeogenesis, as documented in the KEGG database.
The resulting subgraph for the TCA cycle consists of 25 nodes and
70 edges, while the subgraph for Glycolysis/Gluconeogenesis pathway
consists of 46 nodes and 126 edges. Twelve compounds are common to
both pathways, and include phosphate, diphosphate, pyruvate, thiamine
diphosphate, lysine, oxaloacetate, and phosphoenolpyruvate. These
compounds contribute to 23 edges that overlap in both pathways. To
visualize embeddings of these metabolites, we reduce the dimensionality
of the embeddings to 2 via TSNE Maaten and Hinton (2008). For the
connectivity only plot (top), we observe tight clustering of metabolites
within each pathway, while we observe looser clustering when using
MACCS fingerprints as node attributes (bottom). Nodes that are embedded
far away from the clusters, phosphate, diphosphate, and carbon dioxide,
exhibit high connectivity within the KEGG graph, with node degrees of
460, 398, and 545, respectively. On the contrary, nodes within the KEGG
graph have an average degree of 3.5, and nodes within the two reference
pathways have an average degree of 5.5.

3.7 Runtime

A single reconstruction using embeddings in ELP has worst case time
complexity linearly proportional to the maximum degree of a node (Duran
and Niepert, 2017). Combined with negative sampling, a single iteration of
ELP takes O(K|V|deg,, . (V)), where K is the length of fingerprints.
The space complexity of ELP is O(dKn), where d is the embedding
dimension. For benchmarking purposes, our experiments using ELP with
MACCS fingerprints completed in under 40 minutes of wall-clock time
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with 50GB of available memory. In contrast, each experiment using
L2SVM with the MACCS fingerprints took 75 minutes with SO0GB of
available memory. SVM is space bound due to the large number of 12
ordered compound pairs and requires O(Kn2) memory.

4 Conclusion

This work uses embedding propagation to learn molecular representations
that capture both graph connectivity, enzymatic properties, and structural
molecular properties. We show that link prediction using only graph
connectivity is on par with using molecular similarity. Importantly, we
show high accuracy in link prediction when using both graph connectivity
and molecular attributes. Link prediction outperforms prior techniques
based on similarity methods, SVMs, and rule-based methods. Link
prediction was shown effective in reconstructing metabolic pathways and
reactions within the gut microbiota. This work has broader and practical
impact. ELP can be used to guide many biological discoveries and
engineering applications such as identifying catalyzing enzymes when
constructing novel synthesis pathways or predicting interaction between
microbes and human hosts. Graph embedding can be used for other
applications such as biochemical network visualization, as demonstrated
herein. Further, while our approach is applied to biochemical enzymatic
networks, it can enhance link prediction in chemical networks, where
rule-based and path-based link prediction respectively yielded 52.7% and
67.5% prediction accuracy (Segler and Waller, 2017).
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