Topic 6: Convergence and Limit Theorems

- Sum of random variables
- Laws of large numbers
- Central limit theorem
- Convergence of sequences of RVs

Sum of random variables

Let $X_1, X_2, ..., X_n$ be a sequence of random variables. Define S_n as

$$S_n = X_1 + X_2 + \cdots + X_n$$

- The mean and variance of S become

$$E[S_n] = E[X_1] + E[X_2] + \cdots + E[X_n]$$

$$\text{var}(S_n) = \sum_{k=1}^{n} \text{var}(X_k) + \sum_{j=1}^{n} \sum_{k=1 \atop j \neq k}^{n} \text{cov}(X_j, X_k)$$

- If $X_1, X_2, ..., X_n$ are independent random variables, then

$$\text{var}(S_n) = \sum_{k=1}^{n} \text{var}(X_k)$$

The characteristic function can be used to calculate the joint pdf as

$$\Phi_{S_n}(\omega) = E[e^{j\omega S_n}] = \Phi_{X_1}(\omega) \cdots \Phi_{X_n}(\omega)$$

$$f_{S_n}(x) = \mathcal{F}^{-1}\{\Phi_{X_1}(\omega) \cdots \Phi_{X_n}(\omega)\}$$
Sum of a random number of independent RVs

\[S_N = \sum_{k=1}^{N} X_k \]

where \(N \) is a random variable independent of the \(X_k \).

- Using conditional expectation, the mean and variance of \(S_N \) are
 \[
 E[S_N] = E[E[S_N|N]] = E[NE[X]] = E[N]E[X]
 \]
 \[
 \text{var}(S_N) = \text{var}(N)E[X]^2 + E[N]\text{var}(X)
 \]

- The characteristic function of \(S_N \) is
 \[
 \Phi_{S_N}(\omega) = E\left[E[e^{i\omega S_N}|N]\right] = E\left[\Phi_X(\omega)^N\right]
 \]
 \[
 = E\left[z^N \right]_{z=\Phi_X(\omega)} = G_N(\Phi_X(\omega))
 \]
 which is the generating function of \(N \) evaluated at \(z = \Phi(\omega) \).

- Example:
 - Number of jobs \(N \) submitted to the CPU is a geometric RV with parameter \(p \).
 - The execution time of each job is an exponential RV with mean \(\lambda \).
 Find the pdf of the total execution time.
Laws of large numbers

Let \(X_1, X_2, ..., X_n \) be independent, identically distributed (iid) random variables with mean \(E[X_j] = \mu, (\mu < \infty) \).

- The sample mean of the sequence is defined as
 \[
 M_n = \frac{1}{n} \sum_{j=1}^{n} X_j
 \]

- For large \(n \), \(M_n \) can be used to estimate \(\mu \) since
 \[
 E[M_n] = \frac{1}{n} \sum_{j=1}^{n} E[X_j] = \mu
 \]
 \[
 \text{var}(M_n) = \frac{1}{n^2} \text{var}(S_n) = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}
 \]

 - From Chebyshev inequality,
 \[
 P[|M_n - \mu| \geq \varepsilon] \leq \frac{\sigma^2}{n\varepsilon^2}
 \]
 or
 \[
 P[|M_n - \mu| < \varepsilon] \geq 1 - \frac{\sigma^2}{n\varepsilon^2}
 \]

 As \(n \to \infty \), we have \(\text{var}(M_n) \to 0 \) and \(\sigma^2/n\varepsilon^2 \to 0 \).

- The Weak Law of Large Numbers (WLLN)
 \[
 \lim_{n \to \infty} P[|M_n - \mu| < \varepsilon] = 1 \quad \text{for any } \varepsilon > 0
 \]

 The WLLN implies that for a large (fixed) value of \(n \), the sample mean will be within \(\varepsilon \) of the true mean with high probability.

- The Strong Law of Large Numbers (SLLN)
 \[
 P \left[\lim_{n \to \infty} M_n = \mu \right] = 1
 \]

 The SLLN implies that, with probability 1, every sequence of sample means will approach and stay close to the true mean.

Example:

- Given an event \(A \), we can estimate \(p = P[A] \) by
 - performing a sequence of \(N \) Bernoulli trials
 - observing the relative frequency of \(A \) occurring \(f_A(N) \)

 How large should \(N \) be to have
 \[
 P[|f_A(N) - p| \leq 0.01] \geq 0.95
 \]

 i.e., a 0.95 chance that the relative frequency is within 0.01 of \(P[A] \)?
The Central Limit Theorem

• Let $X_1, X_2, ..., X_n$ be i.i.d. RVs with finite mean and variance

$$E[X_i] = \mu < \infty$$
$$\text{var}(X_i) = \sigma^2 < \infty$$

• Let $S_n = \sum_{i=1}^{n} X_i$, and define Z_n as

$$Z_n = \frac{S_n - n\mu}{\sigma \sqrt{n}},$$

Z_n has zero-mean and unit-variance.

• As $n \to \infty$ then $Z_n \to \mathcal{N}(0, 1)$. That is

$$\lim_{n \to \infty} P[Z_n \leq z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx.$$

– Convergence applies to any distribution of X with finite mean and finite variance.

– This is the Central Limit Theorem (CLT) and is widely used in EE.

• Examples:

1. Suppose that cell-phone call durations are iid RVs with $\mu = 8$ and $\sigma = 2$ (minutes).

 – Estimate the probability of 100 calls taking over 840 minutes.

 – After how many calls can we be 90% sure that the total time used is more than 1000 minutes?

2. Does the CLT apply to Cauchy random variables?
Gaussian approximation for binomial probabilities

- A Binomial random variable is a sum of iid Bernoulli RVs.
 \[X = \sum_{i=1}^{n} Z_i, \quad Z_i \sim \text{Bern}(p) \] are i.i.d.
 then \(X \sim \text{binomial}(np) \).

- By CLT, the Binomial cdf \(F_X(x) \) approaches a Gaussian cdf
 \[p[X = k] \approx \frac{1}{\sqrt{2\pi np(1-p)}} \exp \left\{ -\frac{(k - np)^2}{2np(1-p)} \right\} \]
 The approximation is best for \(k \) near \(np \).

- Example:
 - A digital communication link has bit-error probability \(p \).
 - Estimate the probability that a \(n \)-bit received message has at least \(k \) bits in error.

Convergence of sequences of RVs

- Given a sequence of RVs \(\{X_n(\omega)\} \):
 - \(\{X_n(\omega)\} \) can be viewed as a sequence of functions of \(\omega \).
 - For each \(\omega \in \Omega \), \(\{X_n(\omega)\} \) is a sequence of numbers \(\{x_1, x_2, x_3, \ldots\} \).
 - A sequence \(\{x_n\} \) is said to converge to \(x \) if for any \(\epsilon > 0 \), there exists \(N \) such that
 \[|x_n - x| < \epsilon \quad \text{for all } n > N. \]
 We write \(x_n \to x \).

- In what sense does \(\{X_n(\omega)\} \) converge to a random variable \(X(\omega) \) as \(n \to \infty \)?

Types of convergence for a sequence of RVs:

- **Sure convergence**: \(\{X_n(\omega)\} \) converges surely to \(X(\omega) \) if
 \[X_n(\omega) \to X(\omega) \quad \text{as } n \to \infty \quad \text{for all } \omega \in S \]
 For every \(\omega \in S \), the sequence \(\{X_n(\omega)\} \) converges to \(X(\omega) \) as \(n \to \infty \).
Almost-sure convergence: \(\{X_n(\omega)\} \) converges almost surely \(X(\omega) \) if
\[
P[\omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty] = 1
\]
\(X_n(\omega) \) converges to \(X(\omega) \) as \(n \to \infty \) for all \(\omega \) in \(S \), except possibly on a set of zero probability.
- The strong LLN is an example of almost-sure convergence.

Mean-square convergence: \(\{X_n(\omega)\} \) converges in the mean square sense to \(X(\omega) \) if
\[
E \left[(X_n(\omega) - X(\omega))^2 \right] \to 0 \text{ as } n \to \infty
\]
Here the convergence is in a sequence of a function of \(X_n(\omega) \).
- Cauchy criterion:
 \(\{X_n(\omega)\} \) converges in the mean square sense if and only if
 \[
 E \left[(X_n(\omega) - X_m(\omega))^2 \right] \to 0 \text{ as } n \to \infty \text{ and } m \to \infty
 \]

Convergence in probability: \(\{X_n(\omega)\} \) converges in probability to \(X(\omega) \) if, for any \(\varepsilon > 0 \),
\[
P[|X_n(\omega) - X(\omega)| > \varepsilon] \to 0 \text{ as } n \to \infty
\]
For each \(\omega \in S \), the sequence \(X_n(\omega) \) is not required to stay within \(\pm \varepsilon \) of \(X(\omega) \) as \(n \to \infty \), but only be within with high probability.
- The WLLN is an example of convergence in probability.

Convergence in distribution: \(\{X_n(\omega)\} \) with cdf \(\{F_n(x)\} \) converges in distribution to \(X \) with cdf \(F(x) \) if
\[
F_n(x) \to F(x) \text{ as } n \to \infty
\]
for all \(x \) at which \(F(x) \) is continuous.
- The CLT is an example of convergence in distribution.

Relationship among different convergences

MS convergence does not imply a.s. convergence and vice versa.