
Lab #1 (basic bioelectricity) 

How to work as a group 

This lab involves two parts – coding/simulating, thinking about the questions, and writing a 

report. You only need to turn in one report per group. 

The goal of having only one written report per group is to save you time in writing and save 

me time in reading. However, my expectation is that everyone in the group runs the 

simulations and discusses the questions together. The goal is not to have only one person 

learn the material     .  

Overview: 

In this lab, we’ll 

• get our first exposure to BITSEY (a friendly bioelectric simulator) 

• run simulations of single cells to see what voltages they settle to 

BITSEY is a smaller, simpler version of BETSE[1], meant specifically for classroom work. 

It’s open-source Python code that you can find online, but it’s easier to just grab it on the 

Halligan system from the link on the class web page. If you look at the BITSEY code, you 

will see five files: 

• main_vlab1_SS.py: the main entry point. All of the functions that you are responsible for 

writing or modifying will go in main_vlab1_SS.py. 

• sim.py: a library file containing the main bioelectric simulation routines. 

• edebug.py: a library file with various debug-printing routines, to aid in figuring out why a 

simulation isn’t giving you the results you want 

• eplot.py: a library file with several nice routines that help make pretty plots of, e.g., cell 

voltage over time. 

• sim_toolbox.py: a library file with some basic physics models (ion channels and pumps) 

Instructions: 

Please copy all five files to your own work directory, and then open main_vlab1_SS.py to 

take a look. You will notice that the very end of the file contains a call to the main function 

command_line(). This function first checks the command line to find out which simulation to 

set up and how long to simulate for. It then calls sim.sim() to actually run the simulation. 

Finally, it prints out the simulation results. 

Let’s run a simulation. Try python3 main_vlab1_SS.py lab1 5. This will call the function 

setup_lab1() to set up a simulation that instantiates four cells, and then simulates for 5 

seconds of virtual time. For the moment, all four cells are identical. After a short simulation, 

it calls post_lab1() for any plotting that you like. It is originally set up to plot a graph of Vmem 

in each cell (and, since the four cells are identical, the four plots will all lie on top of each 

other). Feel free to experiment with changing the simulation time (via the command line) or 

the plots (by editing main_vlab1_SS.post_lab1()). The header of the file eplot.py lists some 

of the other plotting functions that may be useful. 

Note the various debug data (such as the per-cell Vmem, ion concentrations and various other 

information) that also gets printed, both during the simulation and at the end. When debug 



information is printed, then typically each row (if there are multiple rows) is for one ion; 

each column is the data for one cell. See the documentation for the function dump() for more 

detail (at the top of the file edump.py). 

Now that you know how to run a short simulation, it’s time to do it for real. This time, we 

will run three simulations, each one for 100K seconds of virtual time. Here are the three 

simulations: 

1. Exactly as you did at first, but now running for the full 100K seconds of virtual time. 

Since all four cells are identical, hopefully they behave identically – so their graphs will 

likely overlap. 

2. Altered initial concentrations. Leave cell[0] the same (it will be your reference). Double 

the initial [Na]int, [K]int or [Cl]int in cells [1], [2] and [3] respectively (i.e., each of those 

cells will have one ion concentration doubled). Remember to preserve charge neutrality 

by altering another of [Na]int, [K]int or [Cl]int accordingly (but please do not touch [P]). 

Simulate for 100K seconds again.  

3. Altered density of ion channels. As before, leave cell[0] the same (it will again be your 

reference). Double DNa, DK and DCl in cells [1], [2] and [3] respectively. 

What to turn in: 

Your version of main_vlab1_SS.py. 

A lab report that contains several things. First, your graphs of Vmem for all three sims. For 

simulation #2, also turn in graphs of [Na], [K] and [Cl] across all cells. There’s a call to 

eplt.plot_ion () already in the post_lab1() function; you should add K and Cl as well. 

Finally, turn in the answers to the questions below in your report. 

You need only turn in one report for each group. 

Questions: 

1. At the end of each simulation, the function dump() dumps out various information about 

the system’s final state. Note what it says about the flow rates (in moles/m3∙sec) for Na, 

K and Cl ion channels and pumps (and note that dump() skips printout of any zero-valued 

flow rates). Based on this, is the circuit essentially at steady state at the end of the 

simulation? 

2. Simulation #2 should show that your final steady-state results are insensitive to the cell 

interior’s initial [Na], [K] and [Cl] – let’s explore why. You may want to look at the plots 

of [Na]int, [K]int and [Cl]int for cells #1-3 and compare them to cell #0. 

a. Conservation of mass means that it is impossible for Na, K or Cl to appear out of 

nowhere or to mysteriously vanish. Is it physically realistic for, e.g., cell #1 to 

start with more [Na]int than cell #0 and wind up with the same [Na]int? What 

assumption have we made that makes this reasonable?  

b. Our upcoming unit on QSS bioelectricity talks about negative feedback. In (e.g.,) 

cell #1, you increased [Na]int but did not change Vmem. How would you expect this 

to (at least early in the sim) affect diffusion? Drift? Can you argue that the 

combined effect of the new drift and diffusion tend to have a restorative effect 

(pulling the cell closer to cell #0’s results) or the opposite? 



c. Would the cell-0 final SS solution also be a valid SS solution for cells #1-3? I.e., 

if cells #1-3 somehow eventually reach the same final cell-internal ion 

concentrations as does cell #0, can you argue that cells #1-3 would then be in 

steady state? 

d. (harder). After (a)-(c), you have hopefully argued that it is quite reasonable for a 

cells #1-3 to return to the same point as cell #0. But can you argue that there is no 

other reasonable result? Use idea #1 below to make that argument. 

If you’ve made it through all four of these steps, then you’ve shown that (a) our 

experimental method is not just plain unbelievable, (b) cells #1-3 have a tendency to 

move back to what cell #0 does, (c) when cells #1-3 do reach what cell #0 does, it 

will be SS for them too, and (d) all of this is not only believable, but mathematically 

correct. 

3. Given the final values for [Cl]int and [Cl]ext from simulation #2, compute VNernst for Cl. 

Does it roughly agree with your final Vmem? Explain why. (Note that the simulation 

results only show ICF concentrations and do not show ECF concentrations. To find ECF 

concentrations, look in the file sim.py for the function init_big_arrays(). You can see it 

initializing c_out for each ion, which is the default ECF concentration for that ion).  

4. Simulation #3 should show that DCl does not affect your final results at all; that 

increasing DNa makes the final Vmem more positive, and that increasing DK makes the final 

Vmem more negative. Let’s try to explain this. Remember that in BITSEY, D acts an a 

stand-in for the ion-channel density. 

a. For each of the three cases (cell #1 and Na channels; cell #2 and K channels; cell 

#3 and Cl channels), is the net (drift + diffusion) flow through the ion channel 

inwards, outwards or zero? Based on that, can you argue that your results make 

sense? 

b. Since Cl does not have a pump, it’s especially easy to understand. Consider only 

cell #0, and assume it has reached steady state. Suddenly you double the 

conductivity of its Cl channels, effectively morphing cell #0 into cell #3. What 

happens to the Cl drift current? Cl diffusion current? If they were balanced before, 

are they still balanced? Can you use this to make another argument for the results 

you saw in cell #3? 

c. In our equivalent-circuit model, the density of ion channels corresponds to the 

three parameters GNa, GK and GCl. Can you argue that, based solely on circuit 

analysis of this model, that increasing D should give the results that you saw? (In 

our next unit, we will see that this is more properly applicable to QSS than to SS, 

but for now we won’t worry about the difference). You don’t have to go through 

the detailed circuit analysis to completely show this result, but at least argue 

intuitively using concepts like Ohm’s Law and KVL. 

Some ideas to stimulate your thinking if you like: 

1. (This may help for question 2d). Let’s say you built a set of equations and unknowns 

to compute the final cell voltage. You might have variables (i.e., unknowns) for the 

final [Na]int, [K] int and [Cl] int and for Vmem. You might have one equation that says 

Q=CV (i.e., once you know [Na], [K] and [Cl] you automatically know Vmem). You 

might have another equation that says the total Na current is 0, and two more 

equations for K and Cl. You can assume that a system of N equations in N unknowns 



always has one solution (even though this is not strictly true). What does that say 

about the initial [Na]int, [K] int and [Cl] int? This  

2. VNernst for Na and K will certainly change as you change DNa and DK. However, the 

changes will likely not be drastic. Given that, you can think of the main effect of 

changing DNa and DK as being to change the resistors in your model. (This justifies 

our use of the equivalent model for question 4b). 

Summary of what we learned from this lab 

Hopefully a few lessons come from this lab: 

• The cell develops voltage in a way that’s largely determined by its ion-channel 

conductances. This gives our bodies a nice way to change cell voltages. 

• Even though ion concentrations can vary due to many disturbances, the cell robustly 

reaches whatever voltage the ion channels tell it. 

• Simulation is easy and fun      

Resources 

If you feel like digging a bit deeper, there’s a debugging function edb.analyze_equiv_network 

() that looks at the current ion concentrations and builds an equivalent model just like we did 

in class. You can call it from post_lab1(). Does it give you the same Vnernst for Na, K and Cl 

that you would calculate by hand? It should (at least, within a reasonable tolerance)! Does it 

predict the ion flow rates correctly (i.e., the same as reported by dump())? Remember that our 

linear model is just an approximation. 

[1] Bioelectric gene and reaction networks: computational modeling of genetic, biochemical 

and bioelectrical dynamics in pattern regulation, Alexis Pietak 2017 


