
Lab #3 – Neurons 

How to work as a group 

This lab involves two parts – coding/simulating, thinking about the questions, and writing a 

report. You only need to turn in one report per group. 

The goal of having only one written report per group is to save you time in writing and save 

me time in reading. However, my expectation is that everyone in the group runs the 

simulations and discusses the questions together. The goal is not to have only one person 

learn the material     .  

Overview: 

In this lab, we’ll use BITSEY to simulate just one cell – a simulated neuron. Our goal will be 

to understand the Hodgkin-Huxley model of how a neuron creates an action potential (AP). 

We use the same files sim.py, sim_toolbox.py, edebug.py and eplot.py as usual, but this time 

augment them with main_vlab3_neuron.py. 

The setup code for this lab is substantially more complex than for the first two virtual labs. 

Before you can understand it, you’ll need a bit more background about neurons, which is at 

the end of this lab writeup. You should read that before trying to answer the questions. 

The function setup_HH() sets up a neuron with a Hodgkins-Huxley model. It has a big 

comment on top describing how the code implements the model. While it will hopefully be 

interesting to understand it, you don’t necessarily have to for this lab. Instead, you must 

merely run simulations with various parameters, save the graphs and answer questions about 

what you saw. You do have to understand the model at a high level. 

Detailed instructions 

The parameters we will change are the values of τm, τh and τn. The code sets them in the 

functions HH_M_gen_decay(), HH_H_gen_decay() and HH_N_gen_decay() respectively. 

They are originally set to τm=1, τh=10 and τn=10 near the top of the file; you should change 

them as needed. 

Run the following simulations until t=230 seconds (the action-potential spike starts at t=200): 

1. τm=1, τh=10 and τn=10 (the default) 

2. τm=1, τh=20 and τn=20 

3. τm=1, τh=50 and τn=50 

4. τm=2, τh=10 and τn=10 

You should turn in the Vmem-vs-time graphs for these four simulations (zooming around the 

plot so as to remove the boring part from t=0 to t=200 would be useful). You may find it 

useful to also make graphs of m, h, n, m3h and/or n4, either for your own understanding or to 

help answer the questions below. The code to do that is already in post_HH(); you need only 

uncomment it if you like (the resulting graphs have the Vmem axis on the left, and the 0-1 axis 

for m, n, etc. on the right). 

Questions 

Please answer the following questions: 



1. Compare your simulations for the first three cases above (the three with τm=1). How does 

increasing τh and τn affect the peak voltage of the AP, and why? Remember that these are 

the slow-acting negative feedback. 

2. Compare your simulations for cases #1 and #4 above (τm=1, τh=10, τn=10 vs. τm=2, τh=10, 

τn=10). How does increasing τm affect the peak voltage of the AP, and why? Remember 

that this is the fast-acting positive feedback. 

3. Judging from your simulations, what changes in τm, τh and τn would widen the spike? Can 

your think of any biological benefits of having the spike narrower? Might there be any 

problems if we make the spike too narrow?  

4. We briefly discussed in the lectures how neurons have a refractory period, where they 

will not refire even if their Vmem gets pushed above the triggering threshold. Now that you 

know about m3h and n4, can you explain how our model (and specifically m3h and n4) 

predicts the refractory period? Let’s call the refractory period the time from roughly 

t=205 to t=220 in simulation #1. 

What to turn in: 

You should turn in one file: your report with the graphs and the answers to the questions. 

Summary of what we learned from this lab 

Hopefully a few lessons come from this lab: 

• A simple model can predict how a small Vmem depolarization triggers an AP. The 

same model predicts AP shape and the refractory period 

• The key to the model is voltage-controlled ion channels controlling Vmem in QSS. 

Fast-acting positive feedback kicks off the spike; slow-acting negative feedback ends 

the spike and creates a refractory period. 

Background – the Hodgkins-Huxley model of neurons 

Hodgkins and Huxley started by taking measurements of APs in a giant squid, and then made 

a mathematical model to fit those measurements. Their work was arguably one of the seminal 

discoveries of modern science; they won a Nobel Prize for it in 1963. Though numerous 

people have refined their model since then, it remains the basis of human bioelectricity and is 

still in common use. 

As we discussed in class, they assumed that each neuron has Na and K ion channels that are 

voltage gated – i.e., the fraction of the ion channels that are turned on at any moment depends 

on the cell Vmem. At a very high level, we’ve built a feedback system. Changing gNa and gK 

quickly swings Vmem, which in turn changes gNa and gK, and the circle repeats. Hodgkins and 

Huxley came up with a particular voltage dependence that produces a correctly-shaped AP. 

Since all of the changes are happening in QSS, the spike can be very fast.  

The first step is to write the ion-channel conductances as 

𝑔𝑁𝑎 = 𝑔𝑁𝑎̅̅ ̅̅ ̅𝑚3ℎ 

𝑔𝐾 = 𝑔𝐾̅̅̅̅ 𝑛
4 

So (e.g., for Na), 𝑔𝑁𝑎̅̅ ̅̅ ̅ is the cell’s maximum sodium ion-channel conductance – i.e., its value 

of gNa when all of its Na ion channels are turned on rather than off. It is constant for any cell 



(unless the cell grows). M and h are scale factors between 0 and 1; m3h tells what fraction of 

the Na ion channels are on at any time. 𝐺𝐾̅̅ ̅̅  and n work similarly for K. Then m, h and n will 

be voltage dependent and will hopefully produce the correct AP. 

Note that there is no equation for gCl. While Cl does, of course, have ion channels, they are 

not gated, and so gCl is just constant. 

But what are m, h and n? They are mathematical variables given by the following differential 

equations: 

𝑑𝑚

𝑑𝑡
=
𝑚∞(𝑉) − 𝑚

𝜏𝑚(𝑉)
 

𝑑ℎ

𝑑𝑡
=
ℎ∞(𝑉) − ℎ

𝜏ℎ(𝑉)
 

𝑑𝑛

𝑑𝑡
=
𝑛∞(𝑉) − 𝑛

𝜏𝑛(𝑉)
 

What are these differential equations saying? In our simple lab model, τm, τh and τn are just 

constants. The current value of Vmem determines values for m∞, h∞ and n∞. The differential 

equations above represent exponential decay; m will exponentially approach m∞ from its 

current value. The smaller τm is, the faster m moves towards m∞. 

M, h and n are voltage dependent. When Vmem changes, it takes time for m, h and n to 

smoothly move to their new values. The differential equations above reflect Hodgkin and 

Huxley’s assumption that this dynamic behavior is just an exponential ramp from the current 

value of (e.g.,) m to its final value m∞ with time constant τm – which is why we call our 

symbols m∞ and τm. Here is an example graph to show this: 

 

In the graph, the current value of m is 0.4 at time 0. At that time, m∞ goes to 0.9. The blue 

graph has τm=10 seconds, and the orange graph has τm=20 seconds. Both lines have m 

exponentially approach m∞; τm controls how fast that approach happens. (The graph 

illustrates the differential equation for m in isolation; in a neuron the changing m would be 

part of the feedback system and would change Vmem, in turn changing m∞). 

Hodgkin-Huxley intuition 



Here is a graph of how m∞, h∞ and n∞ vary with Vmem: 

 

 

First look at the blue graph of m∞. Note that it is monotonically increasing. The more positive 

Vmem is, the bigger m∞ gets. But since m∞ determines what value m ramps to, this means that 

a more positive Vmem results in a higher m. And then since 𝑔𝑁𝑎 = 𝑔𝑁𝑎̅̅ ̅̅ ̅𝑚3ℎ, that produces a 

higher gNa. And since VN,Na is positive, this gives us a more positive Vmem – and around and 

around we go, making Vmem higher and higher. In our system-level model of a feedback 

system, this is a fast-acting positive feedback that launches the AP. 

This feedback is what initiates the AP spike. Some external force (e.g., neurotransmitter 

inputs from another neuron) pushes Vmem a bit higher. As soon as Vmem rises high enough to 

where m∞ starts to ramp up (just above -70mV or so in this graph), it kicks off a virtuous 

cycle and the AP runs away with no external input needed. 

But how do we ever leave this cycle? Why doesn’t the first spike for any neuron simply leave 

it stuck at its maximum Vmem? Because of h and m. 

H is in some sense the opposite of m∞. Where m∞ is monotonically increasing, h∞ is 

monotonically decreasing. The bigger Vmem gets, the closer h∞ gets to zero. Thus, as the spike 

rises, h∞ jumps in to pull m3h back down to zero, thus preventing m from raising Vmem higher 

and higher. In fact, τh > τm; this means that m can rise quickly, but h falls more slowly. Thus, 

the spike is allowed to rise up high before h comes along and turns off the Na channels. I.e., 

h is a slow-acting negative feedback that turns off the spike. 

Finally, n∞, like m∞, is monotonically increasing. Thus, as the AP spike rises, n also rises. But 

since n controls K ion channels rather than Na ion channels, and since K has a negative 

VNernst, then n works along with h to shut down the spike. In fact, τn ≈ τh, which means that h 

and n in fact work quite well together to end the spike. 

Going further 

There are numerous textbooks that describe the Hodgkin-Huxley model for medical students; 

they tend to focus on which ions move which direction and ignore the electrical effects. Still 

other textbooks focus on the math in intricate detail. I’ve found it hard to locate textbooks 

that discuss the electrical intuition behind neurons. Here are two textbooks that I like: 



• Biological Physics: Energy, Information, Life: mostly about the physics, but not bad 

intuitively. 

• An Introduction to Modeling Neuronal Dynamics, Christoph Borgers (at Tisch 

online). All about the math – but the first two chapters deal with the math in a more 

simple and reasonable manner than most textbooks. 


