
Virtual lab #5 (Building a planarian) 

Overview 

In this lab, we will experiment with how a planarian (a type of flatworm) might build a Vmem pattern 

that eventually determines its body shape. The Vmem pattern will in principle be quite simple: 

relatively negative at the tail, more positive at the head, and smoothly changing in between. 

However, we will also see patterns with multiple heads, and will see some worms establishing a 

much bigger head-to-tail Vmem gradient than others. 

Our job will be to explain all these results! 

How to run the code 

The worm code is in the file main_worm.py. It uses the function setup_lab_worm(). Unlike the 

previous Python labs, you run this one by simply typing “python main_worm.py.” Everything else 

just happens automatically. 

Most of main_worm.py is infrastructure that you don’t really have to understand. More details are 

at the end of this document, if you’re interested. The top-level code for this simulation is in 

setup_lab_worm(), which is just a short function that uses the main infrastructure. 

What the code does 

• Our worm consists of 5 cells, connected as a straight line of cells. I.e., each cell is connected by a 

gap junction to its two neighbors (one ahead of it and one behind). The head and tail cells thus 

have only one neighbor each. 

• The code for this simulation is in setup_lab_worm(). It 

- creates a worm and does some initial simulation. 

- keeps increasing the density of GJs (i.e., increasing their conductance) until the worms 

are no longer able to build a head-to-tail gradient of Vmem. 

- at each stage (i.e., for each value of GJ density), it prints out worm results; namely, the 

worm’s Vmem gradient and the worm’s shape. 

• Some biological details: 

- In addition to the usual Na, K, Cl and P, each cell has a “mystery” morphagen M with a 

valence of -2. There is initially more M in the head(s) than the tail(s), since the higher 

(i.e., more positive) Vmem in the head attracts M. 

- The worm cells K channels provide positive feedback. A higher [M] in any cell tends to 

shut down that cell’s K ion channels, which tends to make the cell’s Vmem more positive 

(which in turn attracts still more M, and so on). We call these ligand-gated channels, 

since their conductivity is controlled by the concentration of a ligand (i.e., a local 

chemical that attaches to them). 

Understanding the output 

The output will start with initial setup and then have a few lines for each worm simulation. The few 

lines may look like 
240 func evals, status=0 (The solver reached the end of the integration 
interval.), success=True 
    Vm=[-29.775 -51.477 -58.855 -51.477 -29.775]mV 
    [M]=[1.621 0.654 0.449 0.654 1.621] => HTH 



Simulation: gradient=29.1mV => no gradient 
At GJ density=0.0161, deltaV=29.080mV and shape=HTH 

Here is how to interpret this: 

• The first line is irrelevant except if you have to debug a failed simulation. 

• The “Vm=” line gives Vmem in cells 0-4; the “[M]=” line likewise gives [M].  

The worm’s shape (HTH in this case) is determined by the [M] across the five cells. Peaks of [M] 

indicate a head; valleys indicate a tail. In this case, the peaks of 1.621 in cells #0 and #4 are the 

heads, and the .449 in cell #2 is a tail – hence the shape of HTH, or a two-headed worm. 

The Vmem gradient (29.08mV in this case) is defined as the difference of the highest Vmem in any cell 

(in this case, -29.775mV isncells #0 and #4) minus the lowest Vmem in any cell (in this case, -

58.855mV in cell #2). So,  -29.775mV - 58.855mV = 29.08mV. 

To turn in: 

• Since you’re not really changing main_worm.py, you do not need to turn it in. 

• Turn in a graph of ΔVmem vs. GJ density (using your favorite graphing tool). Mark each segment of 

the graph with the associated body shape. 

• Turn in your report, including the graph and the questions below. 

Questions 

1. As GJ density increases, the worm shape changes from HTHTH to HTH and then to HT. Can you 
explain why this is? 

2. As GJ density increases, the gradient generally keeps shrinking. However, each time there is a 
shape change (from HTHTH to HTH or from HTH to HT) the gradient rises. Again, can you explain 
why this is? 

For each of the two questions above, first answer it intuitively. You should use the worm model 

from slide set 4c slides #10 and 28-30, but your description should be intuitive and qualitative rather 

than numerical. Make reference to the appropriate circuit-analysis tools (e.g., Ohm’s Law, KCL, etc.), 

but don’t actually solve equations numerically. 

After answering both question intuitively, do the math to illustrate your point for just one simple 

case – a HT worm. Show that reducing the GJ resistance reduces the Vmem gradient – everything else 

should follows from there, given your intuitive arguments. To make the circuit analysis easier, you 

need only put ion channels in at cells that are a head or a tail. I.e., you can ignore the ion channels at 

cells #1, #2 and #3, only using them at cells #0 and #4. And just pick some reasonable values for the 

various batteries (that don’t have to be completely exact), and useful values for the various resistors 

(that don’t have to be at all accurate but should make your math relatively easy and demonstrate 

the concepts). 

Summary of what we learned from this lab 

This is a fairly simple model, and it certainly does not fully explain morphogenesis. It’s unlikely to 
even fully explain how a planarian decides which end will be its head and which will be its tail.  Then 
what’s the point of the lab? 



This lab hopefully shows that a simple model can often give valuable insights that explain data 
trends. These insights can be easily backed up by simulations that hopefully do match the intuitive 
predictions. 

You can contrast this to the other end of the spectrum; using molecular-level assays to get very 
detailed information on a system’s low-level functionality. The advantage of that technique is that 
its results can be much more authoritative than simulations. However, it also has a tendency to get 
“lost in the weeds” of large amounts of detail and to not generalize well. 

Certainly both approaches can be valuable     . Anyway, one of the main messages of this course is 
that circuit-analysis techniques can give valuable insights into system-level biology. 

Worm-class details 

You don’t really need to understand much of the programming, but here it is in case you’re 

interested.  

The code in main_worm.py is object-oriented code that sets up a class called Worm. Each Worm 

object represents one planarian. The object remembers all of the various parameters that one might 

reasonably change in different worm species or individuals. A Worm object has several methods 

that are useful to us: 

• __init__() is the standard Python function to initialize a new Worm object. It mostly just 

stores all of the parameters of this worm in a parameter dictionary PD. 

• __repr__() is the standard Python function to print a Worm object. 

• setup_Bitsey_network() is a function that ties a Worm to BITSEY. It looks at the parameters 

of this worm and builds a corresponding BITSEY network for the worm. 

• sim() is our simulation function. In an object-oriented world, a Worm should know how to 

simulate itself. That’s what sim() does, using the standard BITSEY infrastructure to actually 

run the simulation. 

• Gradient() and shape() are functions that you can call after calling sim(). They look at the 

simulation results and return the planarian’s Vmem gradient and/or body shape, according to 

the definitions above. 

 


