
FIFO lab #2 – adding a reference model and

scoreboard

How to work as a group

This lab involves coding and simulating. You can work as a group and only turn in one set of

files.

The goal of working as a team is to mirror the way you will most likely work in a real job.

However, my expectation is that everyone in the group learns the code and runs the

simulations. The goal is not to have only one person learn the material 😊.

Goals of the lab

In this lab, we’ll

• Not touch our FIFO itself (other than to fix any issues from lab #1)

• Improve our testbench by adding a reference model and a scoreboard to make it self-

checking. No more having to look at waveforms to determine if it works!

What we won’t do for now:

• Test the FIFO thoroughly, and measure how thoroughly we’ve tested it.

• Those will happen when the FIFO becomes part of the mesh.

Big-picture instructions

• Reuse your two files from the previous lab. If your FIFO does not meet our standards that

we discussed in class, then change it. Otherwise, you can leave it as is.

• Add the new testbench code to tb_fifo_1.sv, creating a new file tb_fifo_2.sv.

• Run your code, either using edaplayground.com or your favorite SystemVerilog

simulator.

• In principle, there’s no need to check your results by eye, using a waveform viewer. But

you’ll probably wind up doing some waveform viewing just to debug your work.

• Turn in your final fifo.sv and tb_fifo_2.sv, as well as a .pdf with answers to the questions

below.

What is a reference model and a scoreboard?

A reference model is a verification model of what the Device Under Test (DUT) should be

doing, cycle by cycle, if the DUT is working properly. You drive the DUT and the reference

model with the same inputs. The scoreboard then compares their outputs – if the DUT and

the reference model ever have different outputs then you’ve found a bug.

The reference model should match what we called “FIFO take 3” in the FIFO Powerpoint

slides (see below).

The slides don’t give any detail on how to drive the select line(s) of the mux that drives the

FIFO output data. The idea is to keep a count n_items of how many items are in the FIFO at

any time. N_items would increment whenever you write the reference-model FIFO and

decrement on reads. Since items are always written into flop[0], and move to the right as

more items are added, the oldest item will always be in flop[n_items-1].

This is not only relatively easy to implement in code, it also gives us an easy way for the

reference model to compute its version of empty and full.

Finally, remember to clear n_items during reset.

What new code to write for tb_fifo.sv

You should add the reference model and scoreboard to the tb_fifo module as follows, piece

by piece:

• Declare your new signals. E.g.,
// Declare the flops and the ref-model output data.
parameter n_flops = 1 << N_ADDR_BITS;
logic [FIFO_WIDTH-1:0] flops [n_flops-1:0], rm_rd_data;
int n_items;

• Add an always_ff block to create the flops, and also to drive n_items.

• Add an always_comb block to drive rm_read_data.

• Add a scoreboard, which is simply assertions to complain if there is a mismatch

between the reference model and the DUT. The assertions should look something

like
scoreboard_checker: assert property (@(posedge clk) …
 else $strobe ("T=%0t: SB=%0x, DUT=%0x", $time,

 sb_rd_data,fifo_rd_data);

It’s up to you to decide exactly what to code in place of the “…”, but it should

compare sb_rd_data with the DUT’s fifo_rd_data. Then add similar assertions to

check empty and full.

Races when driving n_items

The variable n_items can be a bit tricky. While we won’t tell how to drive it, here are a few

ways that will not work reliably because of races.

• always_ff @(posedge clk) begin
if(wr_en) ++n_items
if (rd_en) --n_items

Hint: check out exactly how “++” and “--” work in Sections 11.4.1 and 11.4.2 of the

2017 SystemVerilog LRM.

• always_ff @(posedge clk) begin

in

sb_rd_data

D Q D Q D Q D Q
flop[0] flop[1] flop[2] flop[3]

if(wr_en) n_items <= n_items+1;
if (rd_en) n_items <= n_items-1;

Hint: what will this code do if both wr_en and rd_en are active in the same cycle?

Questions to answer:

1. You already wrote a (hopefully!) perfectly fine FIFO in the previous lab. We just wrote a

completely different FIFO, which was kind of a lot of work. Why bother? Why should

we not have just reused your FIFO code from last week as the reference model?

2. For each of the don’t-do-it-this-way scenarios in driving n_items, can you explain why

that way wouldn’t work? What is the nature of the race involved?

What to turn in:

• Turn in your final fifo.sv (which is probably the same as in the first lab) and tb_fifo_2.sv,

as well as a .pdf with your answers to the two questions.

• Just have one person per team turn in work; no need for every individual to turn in

something separate.

