
Mesh lab #3 – building a tracker

How to work as a group

This lab involves coding and simulating. You can work as a group and only turn in one set of

files.

The goal of working as a team is to mirror the way you will most likely work in a real job.

However, my expectation is that everyone in the group learns the code and runs the

simulations. The goal is not to have only one person learn the material .

Goals of the lab

At this point, after two mesh labs, we now hopefully have a reasonably good RCG that has

tested your mesh enough to make the code fairly robust. This lab will:

• add a tracker, at which point you’ll be all ready for the debug derby.

• Give you further experience with SystemVerilog classes, including the use of static

class instance variables.

Once the tracker is done, we’ll be ready for our debug derby rounds!

Big-picture instructions

• Reuse all of your code from the previous lab. Add tracker code to tb_mesh_2.sv as

described below to make tb_mesh_3.sv.

• Run your code and verify that your tracker works.

• Turn in your final tb_mesh_3.sv and mesh_stop.sv (which may have new bug fixes in it).

The Tracker class

Here is a skeleton for the Tracker class:

class Tracker;
static string signames[$];
static Ring_slot vals[$];

static function void add_signal (string signame, Ring_slot RS);

...
endfunction : add_signal

static function void find_and_print (Ring_slot RS);

...
endfunction : find_and_print

endclass : Tracker

The class has two static instance variables. Both are queues. A SystemVerilog queue is

similar to a C++ vector; an array whose size can grow at runtime (see Spear chapter 2.4 or

the LRM 7.10). Because we declare the queues static, there is only one copy of each, shared

by all Tracker instances. The idea is that for every signal in the design where a packet might

be hiding, we will put its signal name in signames[i] (for some i) and its current value in the

corresponding vals[i].

The Tracker class has two user-visible methods:

• add_signal (string signame, Ring_slot RS). This method gives Tracker one signal’s

name and value. The method should update signames[] and vals[] accordingly.

• find_and_print (Ring_slot RS). This function should hunt through all the signal

name/value pairs. When it finds a value that matches RS, it should print the associated

signal name. I.e., it hunts through the design to find where a given packet is at the

moment.

You may decide to write one or more small “helper” methods in the Tracker class if it makes

your job easier, but the only mandatory methods are the two above.

Integrating the Tracker class into mesh_tb

You can choose any of three tiers of how difficult to make this lab:

1. The simplest is to track only the rings: vert_ring[] and hori_ring[]. In this case, you

might simply have a loop that iterates through all 2∙MESH_SIZE2 ring locations and

calls add_signal() appropriately. This is the same idea as in tracker.pptx slide #10,

but using our Tracker class.

2. The next tier is to also track the outputs of the mesh-stop-internal FIFOs. In this case,

you would most likely use a trick similar to tracker.pptx slide #19, creating a module

that you then bind to the mesh stops. This tier is worth 5 points; if you choose not to

do it then your highest score is a 95.

3. The hardest tier is to also track the internal state of the mesh-stop-internal FIFOs.

This is more complex; you might consider creating a specialized version of module

tracker_module that still (similar to the original tracker_module) instantiates a

Tracker instance, but is specialized to FIFOs – e.g., it knows where they store their

internal state, and how that state becomes valid or invalid as the read and write

pointers advance. This tier is extra credit, worth an extra 5 points.

You may want to directly instantiate one Tracker object from within tb_mesh_3.sv with code

such as

Tracker tracker = new();

No matter which tier you choose, you still have to call find_and_print() from somewhere in

tb_mesh_3.sv. The best time to do this is right after the falling edge of clk; since the mesh

state always changes on the rising edge of clk, the falling edge will have all signals stable and

easily examined without races.

Interestingly, when you call find_and_print(), you don’t have to call it as

tracker.find_and_print(). Since the Tracker methods are static, you can instead call

Tracker::find_and_print (hunt);

Questions

1. In many real-world systems, there are numerous types of packets; different packet types

may have different numbers of data bits, and some packet types with lots of data may

require multiple ring slots for their transmission. In this case, the first ring slot of any

packet would hold a field telling the packet type, and any subsequent ring slots would

have a very packet-dependent format. How would your tracker code change if there were

multiple packet types, and each occupied a different number of ring slots?

2. The tracker that we’ve built is essentially a monitor. Once it has abstracted the bits into

high-level packets, we might want to use them to write checkers. What things might you

check using the output from this monitor?

What to turn in:

• Turn in your final tb_mesh_3.sv, as well as your latest mesh_stop.sv and a .pdf with

answers to the questions.

• Just have one person per team turn in work; no need for every individual to turn in

something separate.

