
Mesh lab #5 – Verifying somebody else’s code

How to work as a group
This lab involves coding, simulating and writing a report. You can work as a group and only turn in
one set of files.

The goal of working as a team is to mirror the way you will most likely work in a real job. However,
my expectation is that everyone in the group learns the code and runs the simulations. The goal is

not to have only one person learn the material .

Goals of the lab
In this lab, we’ll work in a situation that is much more like real life — verify code that is difficult and
that was written by somebody else.

Instructions
• Take brand new design files mesh_stop_challenge.sv and mesh_NxN_challenge.sv. These

implement a capability of routing around dead links. While this capability is substantially simpler
than a commercial implementation, it is also substantially more complex than what you have
seen so far.

• Start by taking a brand-new verification testbench tb_mesh_challenge.sv. This testbench has an
RCG as usual, but with the additional ability to randomly assign dead links.

• The test benches (hopefully!) do not have any bugs. However, the new hardware has multiple
bugs. Each time you find one, you have two choices. You can report the bug to me, along with a
description of what the bug is, and I will give you a new mesh_stop.sv with the bug fixed. Or, if
you prefer (since you may be doing this at a time when I am not available), you can fix the
hardware yourself.

• Feel free to ask me any questions you like about how the hardware works. I will probably
answer them, but not always promptly or even fully. This is on purpose and is meant to be a
feature of this lab — in real life, you will not always be the design team’s top priority. (Sorry!)

What to turn in:
• Turn in your final mesh_stop.sv, as well as a .pdf with a description of each of the bugs and how

you found it.
• As usual, just have one person per team turn in work; no need for every individual to turn in

something separate.

The testbench:

The testbench has several knobs that you can play with. Alternatively, you can use your own

testbench, and merely cut/paste the dead-link code (which is marked by the text NEW CODE, or

which you can find by hunting for “dead” in the testbench) from this testbench to your own. Or you

can add your own tracker to this code if you like.

The testbench RCG has several useful knobs (given with their full names here). You set them inside

of Testbench.build():

• N_packets_to_send: How long the test will be

• Launch_freq: controls the actual number of packets launched per cycle. It should be in the

range [0,10*MAX_PACKETS_PER_CYCLE]. For example, 20 would mean that we launch

exactly 2 packets/cycle; 30 would mean that we launch exactly 3 packets/cycle; and 24

would mean that we launch 2 packets 40% of the time and 3 packets 60% of the time.

• How_often_to_target: a number in the range [0,10] that says what fraction of the packets

target a single mesh stop (0 means that all destinations are random, and 10 means that

every packet targets the same mesh stop).

• Take_result_frequency: a number in [0,10], where 10 means that the environment takes

output packets every cycle that the mesh has one to give, and 0 means that the

environment never takes output packets (which of course would make your simulation

never finish!)

The bugs:

A small hint to you: there is one bug that has nothing at all to do with dead links. Then two dead-link
bugs that have relatively simple fixes. Finally, there is one dead-link bug that is essentially unfixable.

Functional description of routing around broken links

We have decided to only handle broken vertical links, rather than both horizontal and vertical links. This
is not because of any physical reason that vertical links are more fragile than horizontal; it is merely to
keep the lab reasonably simple and focus on your verification skills.

Consider the places where a broken vertical link can force us to change our routing strategy. Start with a
packet traveling from MS00 to MS22. It would normally first travel vertically from MS00 through MS10
and then turn right at MS20, finally traveling horizontally to MS22. What if the vertical link from MS00 to
MS10 were broken?

Obviously, the packet could then not travel vertically from MS00 to MS10. Instead, it must leave MS00
on the horizontal ring, and thus go to MS01. At this point, it could simply continue traveling horizontally
to the destination column at MS02, then do a ring turn to travel vertically, finally going through MS01 to
reach MS22.

In order to do this, we need several new features. First: a new packet, leaving the DrvF, must be able to
adapt to a broken link. If (the usual case), it is supposed to leave on the vertical ring, it must be able to
leave on the horizontal ring instead (i.e., if the outgoing vertical link is broken). Note that we do not
need to handle the opposite case (a packet that is supposed to leave on the horizontal ring but must go
vertically instead due to a broken link), since we assumed that horizontal links never break.

A similar issue can happen if (keeping our example of a packet from MS00 to MS22) the vertical link
from MS10 to MS20 is broken. The packet must now do unexpected ring turn, leaving MS10 on the
horizontal ring towards MS11.

With either of the two issues above, we now have a new situation to deal with. Previously, packets only
entered a horizontal ring when they reached their final destination row; so any packet on a horizontal
ring wire, by the nature of our algorithm, could simply stay on that ring, in that row, until it reached the
destination column – at which point it was done.

Now, however, we must consider the possibility that a packet is traveling on a horizontal ring not
because that is the correct destination row, but because the packet was unfortunately diverted to that
row due to a broken vertical link. In this situation, we will have the packet continue on that row until it
reaches its destination column. At that point, we will have the packet do a brand new trick – a horizontal
to vertical ring turn – and travel on this vertical ring until it reaches its destination mesh stop (MS22 in
our example).

These are the new high level functional capabilities we have an added to support routing around a
broken link. Next, let’s take a slightly deeper dive into exactly how we implemented these features.

Start with the driver FIFO. It already has the capability of driving packets to either the vertical or the
horizontal ring, so we will not need any new datapath. However, we do need extra control logic to force
a packet leaving the FIFO onto the horizontal ring if the outgoing vertical link is broken.

Next consider the logic that handles packets arriving from the vertical ring. It already knows how to send
an incoming packet from the vertical ring to the horizontal ring with a ring turn for the case of a packet
that has reached its correct destination row. It now will need a little bit more control logic, so as to also
force a packet to do a ring turn if the outgoing vertical link is broken. I.e., the vert_sel_pass case must be
converted to vert_sel_turn when a broken vertical leg prevents the vert_sel_pass case from being
possible. That’s it for this section of logic!

Now it’s time to let the fun begin with our deep dive into the final, trickiest logic – handling a packet
traveling horizontally but not on its destination row. When a horizontal-ring packet reaches its

destination column, we already have logic to pull the packet off of the horizontal ring and place it into
the HRxF. All good so far; when the packet leaves the HRxF, we now have two choices. First, if the packet
is a “normal” packet traveling on its correct destination row, it should go to the verification environment
just as before. However, if it is on the “wrong” row, it must now take a ring turn onto the vertical ring.
This requires new datapath to be added, as well as control logic to tell these two cases apart from each
other. It also requires that the vertical ring-driver mux, which has the two legs for vert_sel_pass and
vert_sel_me, now get a new vert_sel_turn (appropriately prioritized) that receives data from the HRxF
and drives it onto the outgoing vertical ring.

And that’s about it – just be thankful that we did not double the complexity by allowing broken

horizontal links 😊.

 How to break a link

We’ve talked about how a mesh stop must change to route around broken vertical links now let’s talk
about how a mesh stop knows which links are broken, and how we actually break a link(s).

How much information does a mesh stop need about which vertical links in the mesh, if any, are
broken? The algorithms discussed above are local, in the sense that they only require that a mesh stop
know if its outgoing vertical link is broken; in particular, a mesh stop does not need to know the status
of any vertical link other than that one. We thus add one more signal vert_link_dead to module
mesh_stop. In a real system, the hardware itself would be responsible for detecting broken links and
driving vert_link_dead correctly to each mesh stop. For us, however, the verification environment will
drive it.

What mechanism should the verification environment use to decide which link or links to break? We will
add a bit of new code at the beginning of our NEW CODE section that uses a parameter to decide how
often to randomly break links. At the beginning of the run, builds a 4x4 array of bits vert_link_dead[][],
of which it drives one bit into the vert_link_dead input of each mesh_stop. Of course, you are free to
overwrite this 4x4 array and, especially for your initial debug, simply drive one or two inputs of your
choice to be dead.

Driving vert_link_dead inputs high will hopefully get your mesh stop to correctly reroute packets.
However, it does not physically break the actual mesh connections. Thus, your mesh could actually route
a packet over a “broken” link without any consequences. To close this loophole, the verification
environment adds one more trick. In the middle of every cycle, it checks the links that it has decided to
declare is broken. If any of those links ever holds a valid packet, the environment immediately flags an
assertion error to stop the simulation.

