
Lab #1 (basic bioelectricity) 

In this lab, we’ll 

• get our first exposure to BITSEY (a friendly bioelectric simulator) 

• run simulations of single cells to see what voltages they settle to 

BITSEY is a smaller, simpler version of BETSE[1], meant specifically for classroom work. It’s open-source 
Python code that you can find online, but it’s easier to just grab it on the Halligan system from the link 
on the class web page. If you look at the BITSEY code, you will see five files: 

• main.py: the main entry point. All of the functions that you are responsible for writing or 

modifying will go in main.py. 

• sim.py: a library file containing the main bioelectric simulation routines. 

• edebug.py: a library file with various debug-printing routines, to aid in figuring out why a 

simulation isn’t giving you the results you want 

• eplot.py: a library file with several nice routines that help make pretty plots of, e.g., cell voltage 

over time. 

• sim_toolbox.py: a library file with some basic physics models (ion channels and pumps) 

Please copy all five files to your own work directory, and then open main.py to take a look. You will 

notice that the very end of the file contains a call to the main function setup_and_sim(). This function 

(defined just above) first checks the command line to find out which simulation to set up and how long 

to simulate for. It then calls sim.sim() to actually run the simulation. Finally, it prints out the simulation 

results. 

Let’s run a simulation. Try python3 main.py lab1 5 . This will call the function setup_lab1() to set up a 

simulation that instantiates four cells, and then simulates for 5 seconds of virtual time. For the moment, 

all four cells are identical. After a short simulation, it then plots out graphs of Vmem and of [Na], [K] and 

[Cl] in each cell. Feel free to experiment with changing the simulation time (via the command line) or the 

plots (which you control by editing some code in main.setup_and_sim(). 

Note the various debug data (such as the per-cell Vmem, ion concentrations and various other 

information) that also gets printed, both during the simulation and at the end. When debug information 

is printed, then typically each row (if there are multiple rows) is for one ion; each column is the data for 

one cell. 

Now that you know how to run a short simulation, it’s time to do it for real. This time, we will run three 

simulations, each one for 100K seconds of virtual time. Each simulation may take an hour or more, so 

you can’t really do it during class. Here are the three simulations: 

1. Exactly as you did at first, but merely running for the full 100K seconds of virtual time. Since all 

four cells are identical, hopefully they behave identically – so their graphs will likely overlap. 

2. Altered initial concentrations. Leave cell[0] the same (it will be your reference). Double the 

initial [Na]int, [K]int or [Cl]int in cells [1], [2] and [3] respectively (i.e., each of those cells will have 

one ion concentration doubled). Remember to preserve charge neutrality by altering another of 

[Na]int, [K]int or [Cl]int accordingly (but please do not touch [P]). Simulate for 100K seconds again. 

3. Altered density of ion channels. As before, leave cell[0] the same (it will again be your 

reference). Double DNa, DK and DCl in cells [1], [2] and [3] respectively. 



Turn in your graphs of Vmem for all three sims. 

Questions: 

1. At the end of each simulation, the function dump() dumps out various information about the 

system’s final state. Note what it says about the flow rates (in mV/sec) for Na, K and Cl ion 

channels and pumps. Any observations? 

The main observation is that the flow rates are consistent with being in steady state. For 

example, here are the results from simulation #1: 

t=100000.0: dumping long-format... 

Vm =      [-49.94 -49.94 -49.94 -49.94]mV 

Na ionCh: [ 818  818  818  818] mV/s*10^1 

Na pump:  [-817 -817 -817 -817] mV/s*10^1 

K  ionCh: [-542 -542 -542 -542] mV/s*10^1 

K  pump:  [ 545  545  545  545] mV/s*10^1 

You will notice that the Na ion-channel flow rates (-81.7 mV/s) almost exactly balance the Na 

pump flow rates (81.8 mV/s). The same is true for K (-54.2 vs 54.4 mV/s). Finally, the flow rates 

for Cl are effectively zero (which is why they are not even printed); this is expected, since there 

is no Cl pump. 

If you ran your simulation in fast mode, you may have gotten slightly more inaccuracy in the 

final numbers. 

2. Simulation #2 should show that your final results are insensitive to the cell interior’s initial [Na], 

[K] and [Cl]. Can you explain why this is? 

There is a big-picture question here: given the ECF ion concentrations, and given the ion-channel 

conductances, is the cell guaranteed to reach a unique final operating point (i.e., a final Vmem and 

final ion concentrations)? If so, then the final simulation results will indeed be insensitive to the 

cell interior’s initial [Na], [K] and [Cl]. But how can we argue that the final values are indeed 

unique? Might there not be more than one final Vmem that is stable, or even none? 

Here’s an argument for uniqueness. Consider the following system of N equations and N 

unknowns. Let there be four unknowns: [Na]final, [K]final, [Cl]final, and Vmem. How many equations 

do we have relating these variables? There are three obvious equations: zero net charge flow for 

each of Na, K and Cl. For, e.g., Na, we have the drift current (which is a function of [Na] and of 

Vmem), the diffusion current (which is a function of [Na]), and the pump current (which is 

effectively constant). The sum of these three must equal 0, since the final concentrations must 

be at steady state. Finally, there is a fourth equation: Q=CV. The charge in the cell is the sum of 

[Na] + [K] – [Cl] (and any other ions that may be in the cell). The capacitance C is fixed, thus 

relating Vmem to [Na]final, [K]final and [Cl]final. 

With four equations and four unknowns, the odds are quite good that the system has a unique 

solution. You will note that the initial ion concentrations were not variables in our equations, 

and indeed did not enter the picture at all. They are thus irrelevant. 

 

3. Given the final values for [Cl]int and [Cl]ext from simulation #2, compute VNernst for Cl. Does it 

agree with your final Vmem? Explain why. 



The external [Cl], which remains constant, is 140 moles/m3; the final internal concentration 

printed by dump() is 22 moles/m3. We thus get VNernst = (26 mV) * ln (140/22) ≈ 48mV. Our 

simulation result, printed by dump(), was 49.9mV. These are reasonably close: remember that 

the final [Cl]int of 22 moles/m3 was rounded to the nearest integer. If you ran your simulation in 

fast mode, you may have gotten slightly more inaccuracy as well. 

4. Simulation #3 should show that DCl does not affect your final results at all; that increasing DNa 

makes the final Vmem more positive, and that increasing DK makes the final Vmem more negative. 

Can you explain this? 

Cl does not have an ion pump. At steady state, we must thus have drift and diffusion currents 

for Cl being equal and opposite. Now consider what happens when we, e.g., double DCl. If the 

system remains at the same final state (i.e., the same [Cl] and Vmem), then both drift and 

diffusion double. Both drift and diffusion are from ions flowing through the Cl ion channels; 

having more ion channels will affect both drift and diffusion equally. If drift and diffusion 

currents for Cl were originally equal and opposite, then doubling both of them will leave them 

still being equal and opposite. Conclusion: the previous Vmem still works as a solution to the new 

cell parameters. Thus, changing DCl does not affect the final results! 

Na and K are a bit harder. The simplest way to think of this is to remember our equivalent-circuit 

model of a cell. In this model, the final Vmem is a weighted sum of VNernst,Na, VNernst,K and VNernst,Cl,, 

with the ion-channel conductances as the weights. Since VNernst,Na is positive and VNernst,K is 

negative, then increasing DNa will tend to make the final Vmem more positive, with the opposite 

for DK. Note that the equivalent circuit as we analyzed it is valid at quasi steady state rather than 

steady state, but still gives reasonable intuition here. 

Some ideas to stimulate your thinking: 

• Vnernst for Na and K will certainly change as you change DNa and DK. However, the changes will 

likely not be drastic. Given that, you can think of the main effect of change DNa and DK as being 

to change the resistors in your model. 

• Assume that a cell has reached steady state. Suddenly you double the conductivity of its Cl 

channels. What happens to the Cl drift current? Cl diffusion current? If they were balanced 

before, are they still balanced? 

• Let’s say you built a set of equations and unknowns to compute the final cell voltage. You might 

have variables (i.e., unknowns) for the final [Na]int, [K] int and [Cl] int and for Vmem. You might have 

one equation that says Q=CV (i.e., once you know [Na], [K] and [Cl] you automatically know 

Vmem). You might have another equation that says the total Na current is 0, and two more 

equations for K and Cl. Does this system of equations always have exactly one solution? If so, 

what does that say about the initial [Na]int, [K] int and [Cl] int? 

Having to wait an hour or more for a simulation is not much fun. Some of the choices for final projects 

include methods of (hopefully) speeding up the simulation, or even using different numerical techniques 

to predict the result almost instantly, without simulating at all. 

If you feel like digging a bit deeper, there’s a function edb.analyze_equiv_network () that looks at the 

current ion concentrations and builds an equivalent model just like we did in class. You can call it at the 

end of the simulation (in fact, the call is already in main.setup_and_sim() but commented out). Does it 



give you the same Vnernst for Na, K and Cl that you would calculate by hand? It should (at least, within a 

reasonable tolerance)! Does it predict the ion flow rates correctly (i.e., the same as reported by 

dump())? Remember that our linear model is just an approximation. 

[1] Bioelectric gene and reaction networks: computational modeling of genetic, biochemical and 

bioelectrical dynamics in pattern regulation, Alexis Pietak 2017 


