
Lab #2 (Changing cell voltage quickly) 

In this lab, we’ll use BITSEY to run more simulations of single cells. This time, our goal will be to 

understand the short-term effects of how changing an ion-channel conductance affects Vmem. 

Logistical note: like lab #1, you can (and should) work in pairs. However, please choose a different 

partner this time. 

You can use the same BITSEY files as last week. This time, we’ll be using and modifying the setup_lab2() 

and setup_lab2b() functions. You will notice that setup_lab2() is quite similar to setup_lab1(). How, then, 

is lab #2 different from lab #1? 

In lab #1, we let the simulations run for many hours of simulated time. You probably noticed that the 

Vmem waveforms started at near 0 volts, then quickly “settled” to a value in less than a second, and then 

moved slowly (over tens of hours of simulated time) to their final values. In lab #2, we only care about 

those initial values – i.e., quasi steady state. Thus, all of our simulations will be just one second of 

simulated time. The wonderful thing about simulating in quasi steady state is that the simulations are all 

short 😊. This type of computation is how our brains work. 

Thus, two very obvious changes for lab #2. First, we will run the simulations for only 1 second rather 

than the 100K seconds we used for lab #1 – so python3 main.py lab2 1. Second, setup_lab2() should 

definitely use the more stable (but much slower) numerical-integration algorithms (p.adaptive_timestep 

= False). Don’t worry – the runs will still be fast.  

You will run two simulations for this lab. The first simulation run is to simply run setup_lab2() and save 

the graph of per-cell Vmem. It should show that the different values of ion-channel conductivity result in 

different quasi-steady-state Vmem. 

After you do that, you have one more simulation run. We would like to understand how resilient this 

type of computing is to small changes in a cell’s initial ion concentrations. To do that we will use a new 

function setup_lab2b(). It’s partially written, and you will fill it in. 

• Create 4 cells as usual, with no gap junctions, just as in setup_lab2(). 

• All four cells should have the ion-channel diffusion constants from cell #2 of the first simulation 

– so a potassium diffusion constant of 10.0e-18 (i.e., Dm_array[K,:]= 10.0e-18), with the other 

ions remaining at their defaults. In setup_lab2(), this should have resulted in quasi-steady-state 

Vmem-57mV. 

• Leave cell #0 as a reference. For cells #1-3, perturb their initial [Na] very slightly, by an extra .005 

moles/m3 for each successive cell. This should be just enough so that each cell has its time=0 

Vmem about 15mV higher than the previous cell (unlike lab #1, you will not compensate by 

changing another ion to restore charge neutrality). If you accidentally change the initial [Na] too 

much (and thus change the initial Vmem by more than about 0.5V), the simulator will not allow 

the simulation to run! 

What happens as a result? The cells now have a different initial charge, and in fact no longer start out 

charge neutral. Their Vmem at time=0 will, therefore, now be nonzero, and in fact different in each cell. 

But does this affect the results at t=1 second? Turn in the graph of Vmem for both setup_lab2() and 

setup_lab2b(). 



Also, please answer the following questions: 

1. Just as with lab #1, you can look at the data printed by dump() at the end of the simulation. In 

lab #1, we saw that for each individual ion, its flow through the pumps was equal and opposite 

to its flow through the ion channels. Is that still true? If not (and in fact it should not be), what 

claim can we make instead – that shows the system has reached quasi steady state? 

2. In class, we discussed a model of quasi-steady-state Vmem that worked as a linear system. The 

debugging function edb.analyze_equiv_network () looks at the underlying physics and prints out 

the equivalent VN and G for each ion. For run #1, you should see each cell having the same VNernst 

(because they all have the same initial ion concentrations), but different conductances (since we 

changed the ion-channel diffusion constants). Do the numbers it prints match your observed 

data for run #1 pretty well? I.e., using circuit analysis, do all of the VN and G values, assembled 

into an equivalent circuit, correctly result in zero net current into the cell? To minimize busy 

work, just do this for cell #2. 

3. What were your results for the modified run? Hopefully, you found that the system is quite 

resilient to small changes in initial concentrations. Can you explain why?  

 

You should turn in two files: your main.py and a report with the graphs and the answers to the 

questions. 


