
Lab #3 (Computing weighted sums) 

 

Here are some typical graphs of Vmem at scale=.1, 1 and 10, and the corresponding pretty plots: 

 

1. How close did your cells come to computing the correct answer (i.e., Vmem)? 

As noted in the lab description, Vmem for the three input cells should be 44mV, 0mV and -66mV 

respectively. The desired Vmem for cell #3 is then (½ * 44) + ( ½ * -66) = -11mV. For cell #4 it’s (⅚*44) 

+ (⅙*-66) = 26mV, and for cell #5 it’s (5/7 *44) + (1/7 * 0) + (1/7 * -66) = 22mV. For scale=.1, we got -

19mV, 25mV and 21mV, which is quite close. For scale=1, they are still pretty close (but a bit worse). 

For scale=10, we have -8mV, 18mV and 15mV, which is not that close to the desired -11mV, 26mV 

and 22mV. 

2. How long did it take to do the computation (i.e., for Vmem to settle to roughly its final QSS value)? 

Again, you can judge this roughly by eye. 

Based on the graphs above, it looks like we have settling times of roughly t=125, t=15 and t=2.5 

seconds respectively. 

3. Did the computation affect the input Vmem values? I.e., was the final Vmem for cells #0-2 affected by 

your computation? Note that if we had only built cells #0-2 without any GJs, their final Vmem values 

would have been 44mV, 0mV and -66mV respectively. At scale=.1, the input voltages are (42,-3,-63), 

which is quite close to (44,0,-66). By scale=10, they are substantially corrupted: (30,-1,-48), all 

moving towards a common middle ground. 

0 

1 

2 

3 

4 

5 

0 

1 

2 
3 

4 
5 

6 



To summarize, as ‘scale’ increases, the cell settles to a final value more quickly. However, the inputs 

tend to be corrupted and the outputs are less accurate. Finding a middle ground is a good thing! 

Now for the explanations. Here is the equivalent-circuit model that we discussed in class: 

 

When scale is large, then the GJ conductances are large and the GJ resistances are small. Essentially, the 

two GJ resistances form a short circuit between the two cells. This forces the two cells to collapse to 

some central value, as we observed. 

When scale is small, and the GJ resistances are thus large, then the currents that flow are small. Small 

currents mean that voltages can change only slowly, which is why the circuit took longer to settle at 

scale=.1. 

As for the accuracy, let’s do some algebra first. To simply the algebra a bit, first combine the two 

resistors GGJ0 and Gcell0 into a single resistor G0. Remember that resistances in series add, so if we were 

using resistance rather than conductance we would have R0 = Rcell0 + GGJ0. Then, since conductance is the 

reciprocal of resistance, we have 
1

𝐺0
=

1

𝐺𝑐𝑒𝑙𝑙0
+

1

𝐺𝐺𝐽0
. Either way, we now just have two batteries (Vcell0 and 

Vcell1) and two resistors (G0 and G1). 

Next let’s do the circuit analysis. Define Vout as the output voltage in cell #3. The current flowing 

upwards in the left branch is (Vcell0-Vout)G0. The current flowing upwards in the right branch is (Vcell1-

Vout)G1. The total current into any node must be zero, so we have (Vcell0-Vout)G0 + (Vcell1-Vout)G1 = 0. 

Rearranging gives us Vcell0 G0 + Vcell1 G1 = Vout (G0 + G1), or 𝑉𝑜𝑢𝑡 = 𝑉𝑐𝑒𝑙𝑙0
𝐺0

𝐺0+𝐺1
+ 𝑉𝑐𝑒𝑙𝑙1

𝐺1

𝐺0+𝐺1
. 

Clearly this is a weighted sum. If we were able to set, e.g., G0=5 and G1=1, then we would compute 

𝑉𝑜𝑢𝑡 =
5

6
𝑉𝑐𝑒𝑙𝑙0 +

1

6
𝑉𝑐𝑒𝑙𝑙1 as desired for the second circuit. However, we are only directly setting GGJ0 and 

GGJ1, not G0 and G1. Remember, though, that resistances in series add. If the GJ resistances are very large 

(i.e., their conductances are small), then the sum of RGJ0+Rcell0  RGJ0, which implies that our setting GGJ0 
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will be a pretty good approximation to setting G0. Thus, setting scale very low (which makes GJ 

resistances high) improves our accuracy. 


