
EE-193: Parallel Computing 
Lab 3: Matrix multiplication 
 
In this lab, you will experiment with multiplying matrices. The file matrix_mpy.cxx already 

contains: 

• A class Matrix. This provides various basic capabilities: 

- Instantiate a matrix. You supply the “bits per dimension.” E.g., Matrix(3) 

instantiates an 8x8 matrix and Matrix(5) instantiates a 32x32 matrix. 

- Various initialization routines. Matrix::init_identity() initializes it to the identity 

matrix; ::init_random() fills it with random numbers in [0,1]; and 

::init_cyclic_order() fills the first row with [0,1,2,…], the second row with 

[1,2,3,…], the third row with [3,4,5,…], etc. 

- Matrix::mpy_dumb() implements a very simple matrix multiplication scheme that 

is single threaded and not blocked; it is simple and reliable but slow. 

- Matrix::mpy1() and ::mpy2() are the functions for you to write. 

- operator(). Internally, the matrix stores its data as one long 1D vector, rather than 

as a 2D array. However, we give you operator() to access it easily with two 

indices. E.g., you can do foo=my_matrix(3,5), or my_matrix(3,5)=2. I had to use 

operator() rather than operator[], since the latter is only allowed to accept one 

parameter. 

- row_str(int row) returns a printable string for the given row; str() returns a 

printable string for the entire matrix. 

• The function main() that calls matrix multiplication for you, times the work and checks 

the results.  

You should implement: 

• mpy1: a single-threaded blocked matrix multiply that uses the ordering rB, kB, cB, r, k, c. 

• mpy2: a multithreaded implementation that spawns as many threads as requested. 

The program matrix_mpy.cxx will then collect the following timing data: 

• The mpy_dumb() algorithm for matrices of size 1Kx1K, 

• mpy_dumb() and both of your algorithms for a matrix of size 2Kx2K. It will use a block 

size of 128x128; and run mpy2() using 1, 2, 4, 8 and 16 threads.  

Provide a short report explaining your results as much as possible. You should at least discuss 

the following questions: 

• Mpy_dumb() probably got almost 40x slower when moving from 1Kx1K matrices to 

2Kx2K matrices. How did the number of floating-point operation change? Why might the 

time have increased so much more than the number of FLOPs? 

• How much faster was your mpy1() algorithm than mpy_dumb()? How might you explain 

that? 

• How did the addition of more cores affect your multi-threaded algorithm? Explain why. 

• It runs out that a non-blocked algorithm just like mpy_dumb(), but with loop order r, k, c 

rather than r, c, k runs almost as well as mpy1(), even for fairly large matrices. Could you 

conjecture how this might possibly be? If we rewrote all our algorithms to use AVX 

instructions (Intel’s SIMD instruction set introduced in 2011), we could get up to almost 



8x the number of floating operations per core. If we did that, do you think that the non-

blocked r, k, c algorithm would still run as fast as mpy1()? 

Remember that each lab machine has one chip with four dual-threaded cores. Each core has its 

own 32KB L1D and 256KB L2, and there is an additional 8MB of L3 ring cache shared among 

the four cores. 

Logistics: 

• The lab assignment is due ?????  at midnight. You must work on this assignment on your 

own. 

• Remember to compile with the line c++ -pthread -std=c++11 -O2 matrix_mpy.cxx 

ee193_utils.cxx. You may add debugging flags as needed. 

• Submit your matrix_mpy.cxx via provide. You should also submit a copy of your report 

as a PDF. 

• As usual, use any Linux box in labs 116 or 118. Before you collect benchmarking data, 

you should reboot the machine. 


