
EE194/BIO196: Modeling Biological Systems
HW 2: Population growth with arrays

Overview

In this homework, we will take HW #1 a bit further. Our basic biology will not change.

However, instead of using 8 individual variables to model a population’s vital rates, we will

use two arrays. By doing this, we will gain two big advantages:

• The code will be simpler. Going from 8 variables down to only two arrays will make

the code shorter and (hopefully) easier to read.

• The code will be more easily extensible. We can now switch from 4 age-based stages

to as many as we like, with minimal change to our software.

HW #2 will have two parts. For the first part, we will keep the same vital rates from HW #1,

and merely change our code from using individual variables to using arrays. In principle, we

should get the same answers as we did in HW #1, which will let us easily validate that our

new code works.

The second part will move to a more complex animal: desert tortoises. They can live to over

75 years old in the wild. We will ignore that part of the population over 75 years old, and

model them with 75 different lxmx pairs, grouped into six different life stages. A model this

complex is only feasible with arrays – but since our code now uses arrays, it will be easy ☺.

In this homework, as in homework #1, fractional individuals are fine; no need to round

anything.

Population growth with arrays

We discussed this in class. However, some quick reminders may still be useful. Consider our

population from HW #1:

• They can be reasonably grouped into four categories: 0-1 years old, 1-2 years old, 2-3

and 3-4 years old. Any animal that reaches their fourth birthday immediately dies.

• We will model only the females.

How can we store our vital rates and population numbers with arrays?

• We will describe birth rate with one array m. It will have four elements: m[0], m[1],

m[2] and m[3]. These correspond to m0, m1, m2 and m3 from HW #1. As with HW #1,

we model births as a pulse immediately upon entering a new age group, and just

before counting the population. We will always have m[0]=0.

• We will describe survival rates with another four-element array p. Again, p[0], p[1],

p[2] and p[3] will correspond to p0, p1, p2 and p3 from HW #1. p[3] will always be

zero.

• You should also have a population array n. Like the other arrays, n will have four

elements; e.g., n[0] will always hold the current number of females between 0 and 1

year old, and n[3] the current number between 3 and 4 years old.

All good so far. Our vital rates are stored in two arrays, and our population size is in one

array. No matter how many age categories we use, this will not change – only the size of the

arrays will change, which doesn’t really affect our code. But it’s one thing to store our data;

we still have to simulate it. How can we do that with arrays?

• We can compute the flow of individuals from one age class to the next over the

course of the year by using element-by-element products. So, instead of saying

n1_next=n0*p0, n2_next=n1*p1 and n3_next=n2*p2, we can simply say n_next[1:4]

= n[0:3]*p[0:3].

• We can compute births in one fell swoop also, using a dot product. Instead of saying

n0_next = n0*p0*m1 + n1*p1*m2 + n2*p2*m3, we can say n_next[0]=(

n[0:3]*p[0:3]).dot (m[1:4])

Problem #1

Repeat problems #1, #2 and #3 from HW #1 (but this time using arrays) and check that you

get the same answers as you did in HW #1. Do this in a file HW2_problem1.py.

Problem #2.

Desert turtles live much longer than 4 years. We can break their life span into several

periods:

• young juveniles, from ages 0-6. Birth rate=0, survival rate=.76

• older juveniles, from ages 7-14. Birth rate=.42, survival rate=.84

• young adults, ages 15-27. Birth rate=3.5, survival rate=.92

• mid-age adults, ages 28-52. Birth rate=4.3, survival rate=.95

• older adults, ages 53 and up. Birth rate=4.8, survival rate=.96

Even though there are five age groups, your simulation should work with full detail, and

track all 75 different ages individually. That is, your arrays m, p and n should all be 75

entries (as noted above, real desert tortoises can live to over 75, but we will ignore any

population that doesn’t fit in our 75-element arrays). You must thus take the data above and

distribute it; i.e., m[0] through m[6] should all be 0, m[7] through m[14] should all be .42,

and so on until you set m[53] through m[74] all to 4.8. The same goes for your p array. You

should do this efficiently using just a few lines of code, rather than assigning all 75 elements

one by one.

Start with an initial population of no young juveniles, 100 older juveniles, 200 young adults,

400 mid-age adults and 500 older adults. (How did the population get so skewed? Perhaps

the population was visited by a disease for which individuals build up more immunity with

age). Just as with m and p, your n array should have 75 entries, and you should spread the

initial population evenly. So for, e.g., older juveniles, you should set the eight entries n[7]

through n[14] all to be 100/8=12.5.

After every year’s simulation, you should report the population in each of the five categories,

as well as the overall total population. You might consider using the sum function on array

slices to make this easy. To help you check your code, after the first year you should have

roughly 4564, 73, 180. 379 and 473 individuals in the five age categories.

For problem #2, you should turn in a file HW2_problem2.py.

Discussion questions:

1. Check your answer for problem #1 manually. Did the computer get the right answers?

2. For problem #2, we are keeping track of every 1-year age group. Why might we want to

do this, even though we only have the vital rates for 5 age groups?

3. After the first five years, a biologist may want to validate the model by counting turtles in

the wild and comparing the measured data to the model predictions. According to your

model, after 5 years has the total turtle population increased or decreased?

4. In the wild, it is quite difficult to capture and count young juveniles. Thus, any data

collected in the wild will have separate numbers for each of the five age categories but

will not have any data for young juveniles. Assuming that the model is correct, and that

the wild population exactly matches the model, then will the year-0 vs. year-5 counts in

the wild (neither of which include young juveniles) show an increase or decrease in the

total counted population?

5. If the modeled total population is increasing, but the counted population in the wild is

decreasing, this might reasonably cast doubt on our model’s validity. How might you

argue the model’s validity to a doubter, based on the collected data?

Extra credit

• One common goal of a population biologist is to try and increase the growth of an

endangered population. Given that we always have limited financial resources, we often

try to decide which vital rate, if increased, would most help the population. We call this

sensitivity analysis. One simple way to find our model’s sensitivity to a given vital rate is

by running two simulations: once with the standard vital rates, and again by increasing

the given vital rate by, say, 5%. Write a loop to do this for every one of the desert-turtle

survival rates, and then see which is the most effective.

• Note that with the limited programming tools we’ve learned so far, this can get unwieldy

quite quickly. Later on we will learn about functions, which will simplify the task.

Logistics:

• Use any lab PC system to write your code. You may use your own laptop if you prefer.

• The due date for this assignment is on the class calendar

• Submit your project at https://www.ece.tufts.edu/ee/194MSO/provide.cgi, which is also

accessible from the course web page. You should turn in HW2_problem1.py,

HW2_problem2.py and discussion.pdf (or whatever other format you use). If you did the

extra-credit problem, turn that in as HW2_EC.py.

https://www.ece.tufts.edu/ee/194MSO/provide.cgi

