
EE194/BIO196: Modeling Biological Systems 
HW 3: Population growth with stochasticity 
 
Overview 

In this homework, we will take HW #2 problem #1 a bit further. Our use of two arrays to 
model a population’s vital rates will not change. However, this time we will add stochasticity 
– i.e., an element of randomness – into the model. We will also add quantization, which is 
the recognition that in real life you cannot have a fraction of an individual. 

Stochasticity 
Nature does not work with perfect predictability. Some years are better than others; perhaps 
due to weather, perhaps due to interactions with a rich variety of other populations and 
influences. While we cannot (almost by definition) model such unpredictable events 
perfectly, we can (and often do) add randomness into our models. 

We will use the Python function random.gauss (mean, sigma) to create random numbers for 
us. We give the function the desired mean and sigma (i.e., the standard deviation), and then 
successive calls to it will return random numbers whose distribution follows the appropriate 
bell-shaped curve. Python also has many other random-number facilities, some of which we 
will use later on in the course. 

Start with your code from HW #2 problem #1 (the simple population-growth model using 4-
element vectors for m, p and n). Use the vital rates from HW #1 problem #1; i.e., m0=0, 
m1=1, m2=5/6, and m3=0, and p0=.6, p1=.8, p2=2/3 and p3=0. 

Now modify your simulation to add stochasticity, as follows: 
• For each year, use random.gauss () to pull a single random number r, which will 

represent how “good” the environment is that year. Always use a mean of zero; the 
standard deviation will differ in each problem. 

• Use this single random number to alter the vital rates. If r is, e.g., 0.2, then all vital 
rates will increase by 20% (i.e., be multiplied by 1.2). Similarly, if r is -.3, then all 
vital rates will decrease by 30% (i.e., be multiplied by 0.7). That is, you simply 
multiply all vital rates by (1+r). 

• A bell-shaped curve has tails that extend infinitely far in either direction. However, if 
r is less than -1, you will wind up with negative values for p and m, and hence 
negative population numbers, which are clearly unrealistic. Furthermore, if r is big 
enough, you can have values for p that are greater than 1, which is equally unrealistic. 
Thus, you should bound r to always be greater than -1, and bound the individual 
survival rates to always be less than or equal to +1 (e.g., using Python’s numpy.clip() 
function). 

Quantization 
The next thing to do is add quantization. All of our previous simulations have allowed 
fractions of an individual. While this is quite convenient mathematically, it is of course not 
possible in real life for any given single population. We will use the Python function 
numpy.round (array) to round our population numbers to the nearest integer. 

You should round to the nearest integer in two places. First, when you use the survival rates 
p to determine how many individuals progress to the next age group, you should round the 



numbers. Next, when you use these rounded numbers with m to determine the number of new 
births, you should round the number of new births. As we discussed in class, you do not need 
to round the number of births from each individual age group before adding them (which 
would prevent you from using a dot product). 

While loops 
We’ve already learned how to use for loops to run a piece of code a fixed number of times. 
Problems #2 and #3 of this homework will give us a different goal: running a population 
simulation until the population dies out, no matter how many years that takes. One common 
tool to use in this situation is a while loop. For example, the code 

i=0 
while (i<5): 

print (i) 
i=i+1 

will print the numbers 0, 1, 2, 3 and 4. Essentially, it executes the two statements “print(i)” 
and “i=i+1” until i is no longer less than 5. 

You can, of course, use any expression at all instead of “i<5”. In problems #2 and #3, you 
might test the population vector n. For example, to continue to simulate as long as there are 
still individuals between 0 and 1 years old, you could use “while (n[0] > 0):”. To test whether 
there are any individuals left at all, you could sum up the entire population and test if it is 
greater than 0 (and note that there is a nice function n.sum() that you have already used). 

Problem #1 
Modify your code from HW #2 to implement stochasticity and quantization as described 
above. Start with an initial population array of [750, 450, 360, 240] and a standard deviation 
of zero. Simulate for 5 generations and check that this population remains constant every 
generation. 

Problem #2 
Modify your code from problem #1 to change the standard deviation to sigma=0.15. Use an 
initial random seed of 0.  Instead of simulating for a fixed number of generations, simulate 
instead until the population dies out completely (i.e., until there are no individuals in any of 
the four age groups). 

Note how many generations are needed for the population to die out completely. 

Problem #3 
Modify your again to change the standard deviation to sigma=0.25. Otherwise, do exactly the 
same as in problem #2. 

You will note that your code for the three problems is quite similar. We will soon learn to reduce 
this code duplication by writing your own functions. 
 
Discussion questions: 

1. Check your answer for problem #1 manually. Did the computer get the right answers? 
2. Did it take longer for your population to die out in problem #2 or problem #3? (If you 

like, you may repeat problems #2 and #3 using other random seeds, to check if the pattern 
holds – but you do not need to turn those in). Compare this with problem #1, where you 
used all of the same parameters except for using sigma=0. Can you explain why a bigger 



standard deviation causes populations to die away more quickly? (you do not need a 
mathematical proof, but just a sentence or two of intuition). 

3. If we had not used quantization, then would the populations ever have died out 
completely? 

Extra credit 
• We have been using lx-mx tables for our population models. Another common way to 

structure the vital rates is by using Leslie matrices. A Leslie matrix holds the same data 
as Lx-mx tables, but uses a single sparse matrix. You can find more information on Leslie 
matrices from Wikipedia, or from Chapter 5 of Plant and Animal Populations, Methods 
in Demography by Thomas Ebert (on reserve at Tisch). 

• According to the Perron-Frobenius theorem, only one of the eigenvalues of a Leslie 
matrix can be positive. The reason this is important is that any eigenvector of a Leslie 
matrix represents a stable population state, and the magnitude of the eigenvalue tells how 
robust the population growth is. Why might that be? (It is actually quite intuitive, given 
the basic definition of what an eigenvector is). 

 
Logistics: 

• Use any lab PC system to write your code. You may use your own laptop if you prefer. 
• The due date for this assignment is on the class calendar 
• Submit your project at https://www.ece.tufts.edu/ee/194MSO/provide.cgi, which is also 

accessible from the course web page. You should turn in two files: HW3.py and 
discussion.pdf (or whatever other format you use). The HW3.py file should clearly show 
which code is for which of the three problems. 

https://www.ece.tufts.edu/ee/194MSO/provide.cgi

