
EE194/BIO196: Modeling Biological Systems 
HW #4: Kinetic proofreading 
 
Overview 

In this homework, we will learn three things. First, we will use the course’s chemical-

simulation framework. Second, we’ll learn one of the simplest of optimization techniques – 

try every reasonable solution and see what works best. Finally, we will get to use a bit of a 

time-honored and extremely useful skill: programming by undocumented example ☺. 

We will be working with kinetic proofreading, and simulating the process of mRNA binding 

to tRNA as part of translation. In theory, each mRNA molecule is supposed to find the 

matching tRNA molecule for its codon and never bind to a tRNA that is carrying the 

incorrect amino acid. In practice, however, an mRNA molecule might have an affinity 

constant to the wrong tRNA molecule that is only 100x or so lower than its affinity to the 

correct tRNA molecule. Kinetic proofreading is the process by which this 100x difference is 

amplified enough to make the translation process quite reliable. 

We will look at the main chemical reactions for mRNA-tRNA binding, and try to find 

combinations of the forward and reverse reaction rates that explain translation’s reliability. 

The reactions are as follows: 

 

In binding, an mRNA molecule binds to a tRNA molecule. Hopefully it binds to the correct 

one, but that depends on how bF and bR for the correct tRNA molecule compare to bF and bR 

for other tRNA molecules. A high bF and low bR would indicate tight binding; in practice bF 

for many tRNA molecules is similar, and bR for “close-match” tRNA molecules may be only 

100x higher than for the desired tRNA molecules. 

In exciting, the bound complex mRNA∙tRNA takes energy (from the decay of GTP) and 

proceeds to an excited state mRNA∙tRNA*. This excited complex can then go through either 

of two paths. 

In decay, mRNA∙tRNA* decays back to individual mRNA and tRNA molecules (note the 

convention that dF is the rate of the combination rather than of the decay). In product, 

mRNA*∙tRNA goes through translation, and produces “product;” i.e., transfers an amino acid 

to the end-product protein. 

The product reaction, like many such reactions in the body, is essentially irreversible, since 

the resultant proteins are quite stable. For this homework, we will ignore the product 

reaction, and measure success by the concentration of the bound, excited mRNA∙tRNA*. 

The simulation framework 
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We’ve discussed the chemical-simulation framework in class. For the most part, calling the 

framework is already done for you in this homework, in a function called sim(). However, 

you will have to fix this function slightly. So let’s hit the highlights of the framework, to help 

you  understand how sim() works. On a high level, you must do several things to simulate a 

system of reactions. 

1. Declare all of your metabolites using add_metab (metabolite, initial_concentration).  

At this point, we are not differentiating between reactants and products (and indeed 

most metabolites will be both). 

2. Declare all of your reactions using add_reaction (model, name, reactants, products, 

parameters). Model is the name of a function that you must supply, and that models 

the reaction. The infrastructure will repeatedly call model ([reactants], [products], 

parameters); i.e., as the simulation progresses and metabolite concentrations change, 

it will call model() and give it the current reactant and product concentrations, as well 

as the reaction parameters (which are typically the rate constants). The model() is then 

responsible for returning the consumption rate of all reactants, and the generation rate 

of all products. Each reaction instance has a name also. This can be useful for 

debugging your simulation. 

3. Run a simulation using, in our case, steady_state_sim(), which simulates the 

pathways until steady state is reached. Then retrieve the final metabolite 

concentrations with final_val(). 

Your task 

You get to start with a skeleton of the code you will write. It will give you all of the 

functions. You must still fill some of the code in. Specifically… 

We’ve provided a top-level function kinetic_proofreading(). You must fill it in with code. At 

a high level, your code should look as follows: 

for every reasonable value of bF, bR, eF, eR, dF and dR: 

call sim() with those reaction rates and get the final [EB] 

call sim() with 100x higher dR and get the final [EB] 

if both sims worked, and the ratio of (good [EB])/(bad [EB]) is over 9900: 

print out the reaction rates and the ratio 

if this is the best set of rates so far: 

save it 

Your code should try every reasonable value of the reaction rates bF, bR, eF, eR, dF and dR 

(you may assume that bR=dR). For each such combination, you must call sim() twice. The 

first time, use the current values of the reaction rates bF, bR, eF, eR, dF and dR. The second 

time, use values of bR and dR that are 100x higher, to model mRNA binding to the improper 

tRNA, and hence the bound mRNA∙tRNA complex decaying much more quickly (whether or 

not it is excited). 

What constitutes “every reasonable combination?” 

• You may assume that bF is always 1. Reaction rates are relative, and so we may 

always choose one of them to be whatever we like. 

• bR can have values of .0001, .001, .01, .1 and 1. Ditto for eF. 

• eR can have values of 0, .001, .01, .1 and 1. Ditto for dF. 



• dR should always have the same value as bR, since they both represent essentially the 

same dissociation. 

Our goal is to find a combination of reaction rates such that our cells do a very good job of 

rejecting improper bindings; i.e., one where the final [EB] is much higher for a correct 

binding than for an incorrect one. Thus, you should calculate the ratio of the final [EB] for 

the correctly-bound case / the incorrectly-bound case. Print out all of the cases where the 

ratio is better than 9900. Furthermore, keep track of the absolute best ratio you get and print 

that out (along with the reaction rates that generated it). 

Your next task is to finish writing the function sim(). Most of it is there. However, I have 

somehow forgotten to add any of the metabolites (mRNA, tRNA, B and EB). You should fix 

this mistake, giving all of them an initial concentration of 1. Furthermore, I have forgotten to 

import the necessary packages to be able to call add_metabolite() and add_reaction(); you 

should fix that as well. 

Debugging 

You may want to proceed in two steps. While you will eventually try every reasonable 

combination of reaction rates, at first you may want to debug your code by just hand-coding 

one combination. Once you have verified that this produces reasonable results, you can go 

ahead and automate the large-scale simulation runs.  

Discussion questions: 

1. What did you notice about the reaction-rate combinations that worked well? Did this 

pretty much match what we discussed in class? Which reaction reates were always bigger 

than others? Which reactions tended to be irreversible? 

2. Roughly how long did the entire program take to run? Roughly how much time did each 

combination of reaction rates take to model (i.e., for both of the calls to sim() together)? 

We simulated 5 different values of 4 different reaction rates, for a total of 625 trials. If 

the system had been more complex, and we had needed to try 5 values of 10 reaction 

rates rather than just 4, how long might it have taken (assuming that the time to model 

one simulation run stayed the same)? Would our exhaustive-simulation technique have 

still been feasible? 

3. One of the functions is called Edecay. Luckily, you don’t have to write it. However, you 

do have to figure out what it does (since reverse-engineering other people’s code is often 

a fact of life). What do you think it does? Explain the equation dF*mRNA*tRNA - 

dR*EB. 

Extra credit: The first discussion question asked for a hypothesis about why some reaction rates 

work quite well. For extra credit, analyze this mathematically. I.e., do the algebra to compute the 

discrimination based on the reaction rates. You will probably find it easier to work in two parts; 

first looking only at the reactions for binding and excitation, compute the final [B] (i.e., when 

[B]’=0) for the good and bad cases, and state a condition that is necessary for effective 

discrimination. Second, assuming that [B] is constant, and looking only at the reactions for 

excitation, decay and product formation, compute the final value of [EB] (i.e., when [EB]’=0), 

and state a condition that is necessary for effective discrimination. To simplify the analysis 

slightly, you may assume in both cases that excitation is irreversible (but do not assume that 

decay is irreversible). 

 



Logistics: 

• Use any lab PC system to write your code. You may use your own laptop if you prefer. 

• The due date for this assignment is on the class calendar 

• Submit your project at https://www.ece.tufts.edu/ee/194MSO/provide.cgi, which is also 

accessible from the course web page. You should turn in two files: 

kinetic_proofreading.py and discussion.pdf (or whatever other format you  use). 

https://www.ece.tufts.edu/ee/194MSO/provide.cgi

