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EE 194 / BIO 196: Modeling Biological Systems 

Homework 5: The Manduca Crawl 
 

Intro and recap from class 

Manduca sexta is a tobacco hornworm (which, in all accuracy, is a caterpillar and not a 

worm!). Manduca cannot do much. Unlike Jumbo, it cannot go to Tufts. It cannot hold a 

job. But it can crawl – and crawling is surprisingly complex. We’re going to use a 

computer to try and control Manduca’s legs and muscles so that it crawls really fast. 

Like any self-respecting hornworm, Manduca has 5 pairs of legs (which again, in all 

accuracy, are prolegs). We’re going to simplify things and assume that each leg of a pair 

acts in synchrony with its partner. In other words, we need only control 5 “legs” (each of 

which is really a leg pair) rather than 10. So for our purposes, we’re going to ignore the 

fact that Manduca has both a left side and a right side. We'll just assume 5 legs going 

from front to back, right down the middle of Manduca’s belly (see Figure 1 in the 

Appendix). 

Legs are great for crawling, but they’re not enough. Neither Manduca (nor any of us) can 

walk on ice. Legs are pretty useless without friction. Manduca does not get to wear 

grippy shoes, nor even to have grippy toes. He does, however, have one thing we do not – 

a “crochet” at the end of each leg. This crochet is like a little pincher. When Manduca 

pinches with the crochet at the end of a leg, that leg is stuck to the ground. We'll use the 

terminology “locked,” saying that a leg is locked if its crochet is pinching. 

Even 5 sticky, pinch-ey little legs are not enough. Like us, Manduca needs muscles to 

move around. While we humans have hundreds of muscles, our Manduca has only four; 

one muscle between each pair of legs (see Figure 1 again). 

Your job will be to get Manduca to move. Specifically, you have to decide which legs to 

lock, which muscles to activate, and the timing of both of these. If you’re unlucky, 

Manduca might stay still or even crawl backwards. If you do well, it will crawl forwards 

quickly. Either way, you will hopefully learn a lot about optimization ☺. 

Just how hard is your job? Well, there are 5 legs (which can be locked or not) and 4 

muscles (which can be on or off). So there are 9 things that can each be in two states, 

giving us 29 or 512 choices. 

But that’s not all; we still have to talk about timing. We’re going to break down 

Manduca’s crawling time into 10 short time periods. In each time period, you will get to 

decide which legs are locked and which muscles are on. That gives you a grand total of 

9*10=90 decisions to make, and so there are 290 (or just over 1027) choices. If you try 100 

choices every second, it will take over 40 trillion years to try them all. Clearly, you will 

have to be more clever than that! 

Before we talk about strategy, though, we should talk about just how you can “try” a 

solution, anyway. No, you are not going to do micro-surgery on a real worm, cutting and 

re-attaching its neurons to implement your plan. That is probably beyond the scope of 

medical technology at this point, and certainly beyond what you can do in a few hours. 

Instead, you will use a simulated Manduca. The simulated Manduca is a Python class 

called Manduca, which (among other things) can take your 90 decisions as input, 
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simulate their effects using a biomechanical model, and return a value for how far 

Manduca crawled. 

The good news:  We will give you the Manduca class… and it will even be (mostly) 

written for you!  The code can be accessed from the class web page. 

We now have a model of Manduca. If we tell the model which legs are locked and which 

muscles are on over time, the model will solve the differential equations of motion and in 

turn tell us how far and fast Manduca crawls. The next task is to define exactly how we 

tell the model when we want legs to lock and muscles to contract. 

We represent the leg-locking schedule with a 10x5 array legs. Each row represents one 

time interval, and each column represents one leg, so that a “1” in legs[1,2] would mean 

that leg #2 is locked during time interval #1 (which is from 10 to 20 seconds). 

Similarly, we use a 10x4 array muscles to control Manduca’s muscles. Again, each row 

represents one time interval; now each column represents one muscle. The values in the 

muscles array must be either 0 or 100. Zero means that the muscle is off. 100 means that 

the muscle is on, and is contracting with a force of 100 Newtons (a Newton is the 

standard unit of force in physics). Thus, a value of 100 in muscles[1,3] would mean that 

muscle #3 exerts a force of 100 Newtons during time interval #1 (from 10-20 seconds). 

In this homework, you will use a genetic algorithm to try to make Manduca cover more 

ground (i.e., a larger distance) in a given amount of time. We will assume this time period 

is 100 time units. 

In a genetic algorithm, remember that we are dealing with a population of individuals. In 

our case, each individual in the population is one solution; i.e., one gait pattern. Some 

patterns will result in Manduca moving faster than other patterns. The goal, of course, is 

to find the individual (i.e., the gait pattern) that is most evolutionarily fit – i.e., the one 

that makes Manduca crawl farthest. 
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The Homework 

To keep the assignment reasonable, we give you a mostly-written class: 

• class Manduca. This class object stores arrays for legs and muscles, as well as 

computing its own fitness value. The class has the following capabilities: 

- You can create a new Manduca with Manduca(legs, muscles).  Legs should be 

a 10x5 array of 1s (to indicate a leg locked) and 0s (unlocked); muscles should 

be a 10x4 array of 100 (for an active muscle) or 0 (inactive).  We incorporate 

these into an object and return it to you. 

- Manduca.mutate (self). You must write this function (see below). 

- Manduca.mate (self, parent2). You must write this function (see below). 

- Manduca.fitness(). This function runs a simulation to see how far the given 

Manduca crawls and returns that value. In fact, to make things run faster, it 

also saves the value away so that the next time you call Manduca.fitness() for 

the same object, it just grabs the old result without needing to run an entire 

new simulation. 

- Manduca.copy(). This function returns a copy of itself. The nice thing about a 

copy is that you can modify the legs and muscles arrays of the copy without 

changing the original.  

As noted, you must write the two functions that generate new children. 

• Manduca.mate (self, parent2). The self Manduca must mate with parent2 and 

return a child. You should use genetic material from both parents. Perhaps the 

easiest thing is to preserve rows of legs and muscles; i.e., take an entire child’s 

row of legs and muscles from one parent or from the other, unchanged; but 

randomly picking which parent to take from. So, you might wind up having 

legs[0,:] and muscles[0,:] coming from parent #2; legs[1,:] and muscles[1,:] from 

self, legs[2,:] and muscles[2,:] also from self, etc. Remember that when you 

assemble a child, you must not change the parents at all. 

• Manduca.mutate (self). It takes genetic material from self  and performs several 

mutations. It does not return any values. 

 

What is a mutation exactly? To mutate a single individual, mutate() should first pick how 

many mutations to make in that individual. Then, for each mutation, pick what type of 

mutation to make: change a leg between locked↔unlocked (i.e., 1↔0) or change a 

muscle between on↔off (i.e., 100↔0). If you flip a leg, then there are 5 legs and 10 time 

intervals: so 50 choices on what to flip. Similarly, there are 40 choices on which muscle 

to flip.  

If you like, you can also implement a secret sauce for mutation. In this unusual genetic 

mutation, you take one or more rows and replicate them. So, e.g., you might take rows #3 

and 4 and copy them forwards to rows #7 and 8. 

Here is a bit more information about the rest of the code (you do not need to modify this 

code, but might be interested in how it works). The top-level function is manducaEv(). It 

mostly just instantiates a random initial population, and then calls run_generation 

(population, n_matings, n_mutations) repeatedly. That function runs one generation of 

simulated evolution; it creates children (by matings and mutations), and selects the fittest 
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individuals to survive to the next generation. It also randomly leaves some less fit 

solutions, to promote genetic diversity. 

Detailed description: 

• Take the existing files manducaEv.py and manducaFitness.py. You should not touch 

manducaFitness.py; all of your code will go into manducaEv.py. 

• Fill in the functions Manduca.mate() and Manduca.mutate(), in manducaEv.py. 

• Run the entire evolutionary process three times with different initial random seeds. Each 

run should have a population of 20 solutions, and create 10 matings and 10 mutations in 

each generation. You should run each for 70 generations. 

• Run once more with 210 generations. 

 

Debugging your code: Code that has randomness built in can be difficult to debug. A few tricks 

that may help: 

• Always seed the random-number generator yourself, rather than letting Python do it for 

you. This way, your runs will be repeatable. In fact, we’ve already done this for you with 

a parameter to manducaEv(). 

• Print out the first few matings and mutations fully, and hand-check that they look 

reasonable. 

 

Discussion questions: You should turn in a file HW5.pdf (any file format is fine, as long as it is 

readable). It should include the following: 

1. Graph the best distance vs. generation number for each of the three runs. 

2. How do the three runs compare? Why aren’t they identical? 

3. Think about what constitutes a good initial solution. Does this solution have to make 

Manduca move forward? 

4. Instead of doing three runs of 70 generations each (with different initial seeds) and 

keeping the best, you might consider one large run of 210 generations (in fact, you tried 

both). Which worked better for you? Would you expect one approach to definitely be 

better than the other? 

 

Animation 

• If you would like to see an animation of your results, you can use manducaGraph.py. 

This requires two steps. 

• First, create a file with the particular strategy you would like to animate. This is a file 

with one line per time segment, and the leg and muscle controls for that segment all on 

the same line (separated by a vertical bar). ManducaEv.py prints this out for you every 20 

generations. 

• Next call the function read_from_file_and_graph (filename). You can find this function 

in manducaEv.py. Just change the top-level call in manducaEv.py from calling 

manducaEv() to call read_from_file_and_graph() instead. 

 

Extra credit 

• Run once more with 1000 generations. This time, instead of dividing the 100-second time 

interval into 10 segments of 10 seconds each, divide it into 100 segments of 1 second 

each. This is easy to do; in your function manducaEv(), change the call to 
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random_manduca() to instead call random_manduca(100). This will make all of the 

initial population have 100 time segments; i.e., the legs[] and muscles[] arrays will each 

have 100 rows rather than 10. From there on, the code will/should simply adapt to the 

new sizes. Note that this means your mate() and mutate() functions must be smart enough 

to note how many time segments there are and adapt; i.e., not to have “10” hard-coded in. 

• What was your final result? Was it qualitatively different from your other results? If so, 

why do you think that was? Using the animation software may help you answer this 

question; or you could just look at the tabular output from manducaEv.py. 

 

Logistics: 

• Use any lab PC system to write your code. You may use your own laptop if you prefer. 

• The due date for this assignment is on the class calendar 

• Submit your project at https://www.ece.tufts.edu/ee/194MSO/provide.cgi, which is also 

accessible from the course web page. You should turn in manducaEv.py, containing your 

code, as well as manduca.pdf (or similar extension), with the graphs and answers to the 

discussion questions  

https://www.ece.tufts.edu/ee/194MSO/provide.cgi


6 
 

Appendix: Biomechanics of the Manduca model 

We will use a simplified Manduca model that consists of a symmetrical structure, with 5 

legs and 4 muscles.   The legs may be locked or unlocked. The legs are drawn as brown 

circles, and the muscles as green lines. 

 

 

 

 

Figure 1 

The body segments will be modeled as springs. Like the soft tissue in your own body, a 

Manduca body segment pushes back when you try to compress it. 

Figure 2(a) shows a simple spring. It is anchored on one end, and free to move on the 

other.  A basic spring has a resting length L0, a mass m, and a spring constant k. Δx is the 

displacement of the spring’s end from its equilibrium condition, or x - L0. 

 

The restoring force exerted by the spring is Fs = -k Δx  

 

A perfect spring has no friction and never loses any energy. Real-life soft tissue returns to 

its original shape slowly, losing energy as heat in the process. A more realistic spring 

model therefore involves “damping”, with a damping coefficient c.   The bigger the 

damping coefficient, the more energy is lost as heat, and the slower the spring will return 

to its resting state. The damping force is expressed as Fd = -c dx/dt. 

 

Applying Newton’s second law to the mass m, we have F = ma = m d2x/dt2, where F is 

the total force on the mass. 

 

The only forces acting on m are the spring's restoring force and viscous forces: 

m d2x/dt2 = -kx -c dx/dt. 

 

This can be re-arranged into: 

m d2x/dt2  + c dx/dt + k (x - L0)  =0 

 

Manduca’s muscles are controlled using an electrical pulse that makes them contract.   This 

is called an actuation force, A.   We will need to account for it! 

Also, Manduca’s muscles may not be anchored by its locked leg positions.   

Leg #0 Leg #1 Leg #2 Leg #3 Leg #4 

Muscle #0 Muscle #1 Muscle #2 Muscle #3 

Head (front) rear 
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So we need to explore what a spring does when both ends are free!  See figure 2(b).  This 

situation is very similar to the case in Figure 2(a), but we need to additionally describe the 

forces on the other end of the spring.  Two differential equations are required as follows: 

𝑚 𝑥𝑏
′′ =  −𝑘 (𝑥𝑏 −  𝑥𝑎 − 𝐿0) −  𝑐 ( 𝑥𝑏

′ − 𝑥𝑎
′ ) −  𝐴    (1) 

𝑚 𝑥𝑎
′′ =  −𝑘 (𝑥𝑎 −  𝑥𝑏 + 𝐿0) −  𝑐 ( 𝑥𝑎

′ − 𝑥𝑏
′ ) +  𝐴   (2) 

Clearly, we cannot model Manduca as a single 

spring, so we can try to do it with two springs 

as follows: 

 

The cylinders are legs – we will assume them 

unlocked.  We can write the following 

equations for each of the points. 

𝑚 𝑥𝑏
′′ =  −𝑘 (𝑥𝑏 −  𝑥𝑎 − 𝐿0) −  𝑐 ( 𝑥𝑏

′ − 𝑥𝑎
′ ) − 𝐴𝑎𝑏    (3) 

𝑚 𝑥𝑎
′′ =  −𝑘 (𝑥𝑎 −  𝑥𝑏 + 𝐿0) −  𝑐 ( 𝑥𝑎

′ − 𝑥𝑏
′ ) + 𝐴𝑎𝑏 + 

                −𝑘 (𝑥𝑎 − 𝑥𝑑 − 𝐿0) −  𝑐 ( 𝑥𝑎
′ −  𝑥𝑑

′ ) −  𝐴𝑑𝑎    (4) 

𝑚 𝑥𝑑
′′ =  −𝑘 (𝑥𝑑 −  𝑥𝑎 + 𝐿0) −  𝑐 ( 𝑥𝑑

′ − 𝑥𝑎
′ ) + 𝐴𝑑𝑎   (5) 

 

This can be easily extended to capture the Manduca model in Figure 1.  We can also 

extend it to model what happens when we lock one or more of Manduca's legs; i.e., that 

leg's position remains constant, while its velocity and acceleration become zero. 

 

Figure 3.  A three-legged Manduca. 


