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This extra-credit problem will be due the same time as the regular homework, as 

indicated on the class calendar. You can either write up your answers and turn this in via 

provide, or just stop by during office hours and explain your solutions in person (without 

needing to write them down). 

 

Like most(all) of the extra-credit problems, the answers to these questions require 

material that is not covered in the class, and usually is not in the textbook either. 

 

We mentioned in class that, most of the time, the energy expended in a series resistor is 

the same as the energy stored or discharged in a capacitor. This is our energy hypothesis. 

Now let’s prove when it does (and doesn’t) work. 

 

1. (easy) Consider a capacitor C initially charged to a voltage V. Discharge it by 

connecting a resistor R across its two terminals. Prove that the energy lost by the 

capacitor all becomes heat energy created by the resistor. Prove that this is true at 

any point during the discharge process, even before the capacitor is fully 

discharged. Prove that this energy is independent of R. 

We could solve this by using the differential equation for a capacitor, 𝑖 = 𝐶
𝑑𝑉𝐶

𝑑𝑡
 as 

well as KCL and KVL, and solving for the current as a function of time. 

However, as with most physics problems, it’s substantially easier to use energy 

methods. The answer is then almost trivial. At t=0, there is energy stored in the 

capacitor (in the form of an electric field). As the capacitor discharges to some 

voltage, there is of course less energy stored in the capacitor. A resistor does not 

store energy. Thus any energy no longer stored in the capacitor can be in only one 

place – converted to heat. Note that the value of the resistor did not even enter 

into the discussion; it is simple conservation of energy. 

 

2. (medium) Now charge C via a series circuit: a voltage source V through a resistor 

R and then C. Prove that when we fully charge C from 0 volts to V volts, the 

hypothesis is true. Prove that this holds even if R changes while the capacitor is 

charging (which is good, since an MOS transistor in its active mode can be 

modeled as a variable resistor). Hint: this problem does take a small bit of 

calculus, but does not require solving any differential equations. 

This too can be done by solving the usual differential equations. However, it is 

substantially more complex. Note that the usual result that 𝑉𝐶 = 𝑉𝑠 (1 − 𝑒−
𝑡
𝜏⁄ ) 

only works for a constant R, which is not the case here; the differential equations 

are more complex than that. 



Instead, we will again use energy methods. Let the current at any time be i. Let 

the voltages be VC for the capacitor and VS for the constant voltage source. 

The power supplied by our voltage source VS at any given time is simply iVS; 

therefore the total energy is 𝐸𝑆 = 𝑉𝑆 ∫ 𝑖𝑑𝑡. But the voltage-source current is in 

series with the capacitor current and they are thus equal, so in fact (by the 

definition of a capacitor), 𝑖 = 𝐶
𝑑𝑉𝐶

𝑑𝑡
. Then the energy expended by the voltage 

source is 𝐸𝑆 = 𝑉𝑆 ∫ 𝑖𝑑𝑡  = 𝑉𝑆 ∫ (𝐶
𝑑𝑉𝐶

𝑑𝑡
)𝑑𝑡 = 𝐶𝑉𝑆 ∫ 𝑑𝑉𝐶 = 𝐶𝑉𝑆

2. When the 

charging is done, the amount . 5𝐶𝑉𝑆
2 of this will have gone into the capacitor’s 

electric field, leaving the remaining . 5𝐶𝑉𝑆
2 to have been expended as heat energy. 

Here’s an alternate derivation that’s a bit harder. The energy stored in the 

capacitor is EC=.5CVC
2. But the voltage across a capacitor is VC=QC/C, and by the 

definition of current we must have 𝑄𝐶 = ∫ 𝑖𝑑𝑡,
𝑡𝑓
𝑡=0

 and thus the capacitor energy is 

𝐸𝐶 = .5𝐶𝑉𝐶
2 = .5𝑄𝐶𝑉𝐶 = .5𝑉𝐶 ∫ 𝑖𝑑𝑡. 

Next, consider the energy supplied by our voltage source VS. At any given time, 

the power is simply iVS; therefore the total energy is 𝐸𝑆 = 𝑉𝑆 ∫ 𝑖𝑑𝑡. But by energy 

considerations, any energy supplied by the source can only go to two places: it 

can be stored in the capacitor, or dissipated as heat by the resistor (an ideal 

capacitor stores energy, but does not dissipate energy). Thus the energy dissipated 

by the resistor must be 𝐸𝑅 = 𝐸𝑆 − 𝐸𝑐 = 𝑉𝑆 ∫ 𝑖𝑑𝑡 − .5𝑉𝐶 ∫ 𝑖𝑑𝑡. 

We’re almost there. When the capacitor is fully charged, then VC=VS, which 

implies that 𝐸𝑅 = 𝑉𝐶 ∫ 𝑖𝑑𝑡 − .5𝑉𝐶 ∫ 𝑖𝑑𝑡 = .5𝑉𝐶 ∫ 𝑖𝑑𝑡. But this is just the 

expression we’ve derived above for EC – thus ER=EC. As with problem #1, the 

value of the resistor has not entered into anything we’ve done. This is as 

expected: the resistor controls the rate of the process, but does not alter the final 

equilibrium result.  

3. (easy, given #2) Prove that if we only partially charge C (i.e., not all the way to V 

volts), then the hypothesis is false. Does the charging process waste more energy 

near the beginning or near the end? There is a style of circuit design called 

adiabatic logic that takes advantage of this. 

From above, 𝐸𝑆 = 𝑉𝑆 ∫ 𝑖𝑑𝑡  = 𝑉𝑆 ∫ (𝐶
𝑑𝑉𝐶

𝑑𝑡
) 𝑑𝑡 = 𝐶𝑉𝑆𝑉𝐶 . The energy in the 

capacitor is . 5𝐶𝑉𝐶
2, leaving 𝐶𝑉𝑆𝑉𝐶 − .5𝐶𝑉𝐶

2 = 𝐶𝑉𝐶(𝑉𝑆 − .5𝑉𝐶) for the resistor. 

This is only equal to . 5𝐶𝑉𝐶
2 when VC=VS; until then, it is larger. So the charging 

process is at its most efficient when the two voltages are close together (at the end 

of the charging), and at its least efficient when VS far exceeds VC (at the 

beginning). 

The alternate proof could also be used. We have 𝐸𝑅 = 𝑉𝑆 ∫ 𝑖𝑑𝑡 − .5𝑉𝐶 ∫ 𝑖𝑑𝑡. We 

can rephrase this as 𝐸𝑅 = (
𝑉𝑆

.5𝑉𝐶
) . 5𝑉𝐶 ∫ 𝑖𝑑𝑡 − .5𝑉𝐶 ∫ 𝑖𝑑𝑡 = 𝐸𝐶 (

𝑉𝑆

.5𝑉𝐶
− 1). Clearly, 

this is only equal to EC when VS=VC. Certainly VC cannot exceed VS, but clearly 

the process is at its most efficient when the two voltages are close together (at the 



end of the charging), and at its least efficient when VS far exceeds VC (at the 

beginning). 

In adiabatic logic, the power supply is raised to its final value slowly, with the 

result that the resistor burns almost no power. In the language of thermodynamics, 

we would say that this approaches a reversible process, with little increase in 

entropy and hence little energy lost as heat. 

 

4. (easy) Now replace the voltage source V with a constant-current source I. Prove 

that, for this circuit, the hypothesis is no longer true when charging the capacitor. 

Let the current source have value IS. Then the resistor power is a constant IS
2R, 

and the resistor energy is IS
2Rt. In the capacitor, we have 𝑄𝐶 = 𝐼𝑆∆𝑡 and the 

energy stored in the capacitor is 𝐸𝐶 = .5𝐶𝑉𝐶
2 = .5𝐶 (

𝑄𝐶

𝐶
)
2

= .5𝐶 (
𝐼𝑆∆𝑡

𝐶
)
2

=

.5
𝐼𝑆
2∆𝑡2

𝐶
.  Clearly, IS

2Rt does not in general equal . 5
𝐼𝑆
2∆𝑡2

𝐶
 for all values of R, C 

and t. 
 

5. (might take some thought) Given that an MOS transistor in saturation is often 

modeled as a constant-current source, and that we just showed that our energy 

hypothesis does not work for a constant-current source, why do we often claim 

that our hypothesis works well in integrated circuits? 

This is an interesting question. It is true that an MOS device in saturation is 

reasonably modeled by a constant-current source at times. However, it is not fair 

to say that this is identical to the constant-current source we use in circuit 

analysis. Most importantly, whereas the true constant-current source expends a 

power at any time of just its current times the instantaneous voltage across it, the 

MOS device does not obey such a simple rule. With regards to the power it 

produces, it is probably better modeled as a constant-voltage source in series with 

a time-varying resistor of just the correct value as to provide the desired 

“constant” current. 

 


