
EE-194: Advanced VLSI 
HW #3: simple binning 
 
In this homework, you will write code to decide how to adjust the voltage for a chip to place it in 
the bin that sells for the most money. The file binning_simple.cxx already contains several 
functions: 

• main(). It creates a chip at a random process corner and gives the chip to you to decide 
what bin to place it in. 

• int best_bin (const Chip &chip) is the function that you must write. Using the functions 
just described, you decide which bin to place chip into, and return that bin (specifically, 
an index into the global vector g_bins described below). Note that you must also fill in 
g_bins[your-best-bin].fpv.V with the correct voltage. 

• run_test_pass (const Chip &chip, int V, int freq, bool *pass, double *power). This 
function allows you to test the chip at the given voltage and frequency. It returns pass, 
which tells you if the test passed. It also returns how much power the chip used when 
running the test. Even though this function is the only way you get information about the 
chip, one of your goals is to be clever and call run_test_pass() as few times as possible. 

• data_collect (int V, int freq, bool pass). Once you have run run_test_pass(), you may call 
data_collect() to save away the results for future reference. Specifically, you may then 
call data_bound (FPV fpv, int *Vmin_pass, int *Vmax_fail). The fpv tells what voltage 
and frequency you intend to run a new sequence of tests at; data_bound() looks at all of 
the data you’ve given it and returns two values. Vmin_pass is the minimum voltage at 
which the test will definitely pass (and is the minimum voltage for which you’ve already 
told data_collect() that the test passes as this frequency). Similary, Vmax_fail is the 
maximum voltage at which the test is guaranteed to fail at this frequency. Note that you 
do not need to use these functions; however, they may help you minimize your calls to 
run_test_pass(). 

The file also contains various data structures: 
• struct Bin describes a particular bin. It starts with a price; i.e., how much money a part in 

this bin sells for. It then has an fpv structure (which stands for frequency/power/voltage). 
The fpv.freq field describe the frequency that chips in this bin run at, and fpv.power states 
the maximum power chips in this bin are allowed to dissipate. Finally, fpv.V says what 
voltage the chip should run at in order to meet the frequency and power specs. Note that 
while freq and power are provided to you, you must set V yourself. Furthermore, you 
must set it to the minimum value that meets frequency, so as to minimize power as much 
as possible. 

• vector<Bin> g_bins is a vector that lists all of the possible bins a chip can be placed in. 
You must choose from one of these bins. 

• struct Chip is the structure for a chip. Its instance variables describe the chip’s process 
corner. However, you are not allowed to look at them; you can only call the various 
functions already described. 

Logistics: 
• Remember to compile with the line c++ -std=c++11 binning_simple.cxx. You may add 

debugging flags as needed. 



• Submit your binning_simple.cxx via provide. 
• You may use any Linux machine you choose; either any box in any of the Linux labs, or 

the dell24 homework server. 


