4.0 Software System Design

The software components make up the majority of this project. In the Bluetooth development kit, there is sample code that was utilized for the connection between the computer and the devices. The sample program implemented a chat type program. The source code for the chat program was necessary to emulate the programming syntax. There was no information on how to set up the devices in order to start them communicating with each other, so it was necessary to use the sample code in order to get them started. Once they were communicating using the sample program, it was possible to send messages back and forth between them.

[image: image1.wmf]Mail client

application

Bluetooth

API

Bluetooth

API

Windows

Event Queue

Mail Relay

Application

POP3

Server

Application

Internet

Bluetooth

USB Driver

Bluetooth

USB Driver

Figure 4.1: Software Progression.

A message protocol needed to be developed for the mail messages getting passed back and forth between the two devices. This had to be developed so that the payload of the message wouldn't cause any unwanted behavior.

Routines needed to be developed that can pass the messages from the computer to the Bluetooth devices, complete the Bluetooth connection and then communicate from the devices to the other computer. This was done by adding code to the existing sample communication code.

The client computer needs to display the options to request data and then display the data requested. The user interface needs to make this data exchange easy enough to show that the data exchange successfully took place. There also needs to be some sort of connection routine user interface on both computers in order to allow the host computer to communicate with the Bluetooth devices.

4.1 Communication with the Bluetooth device

The main form of communication with the Bluetooth devices is using the application programming interface, or API, that is supplied with the Bluetooth devices. There are two parts of the API that are used. The initial connection is created by using the sample code, so the details of the connection will not be discussed here.

The part of the API that was used was the transmission and receiving of data. To transmit data, the API function COM_DataAlloc needed to be called with the correct size, in bytes, of the message that is going to be sent. Since most of the message was text, the standard size-type functions could be used to determine the size of the message, and the proper amount of memory could be allocated for the Bluetooth message.

uint8 *COM_DataAlloc(uint16 uiLength);

The data is sent to the other computer by then calling the API function COM_DataSend. The arguments for this function are the sequence number of the message (which isn't used in this program, a pointer to the actual data to be sent, the handle, or identifier of the device that is on the other computer and finally the size of the message (in bytes) of the data that is going to be sent.

void COM_DataSend(uint8 ucSeqNr,

 uint8 *pucData,

 uint16 uiHandle,

 uint16 uiLength);

When the sender calls COM_DataSend, the receiver specified in the uiHandle field extracts the data from the message received with COM_DataExtract and responds with the function COM_RspData. MSG_TDataMsg is a constant declaring the type of data received, the next field is the length of the data received and the last field is the handle, or identifier, of the device where the data was originally transmitted from.

uint8 *COM_DataExtract(MSG_TDataMsg *ptDataInd,

 uint16 *puiLength,

 uint16 *puiHandle);

For COM_RspData, the response is the sequence number that was received, the result, which indicates whether the entire message was received correctly, and the handle of the original sender.

void COM_RspData(uint8 ucSeqNr,

 int16 iResult,

 uint16 uiHandle);

[image: image2.png]CLIENT
APPLICATION

com

com SERVER
APPLICATION

K Sign-up COM

Set-up a connection >

COM_DataAlloc »
COM_DataSend
iéM DATA CNF

q‘ EM DATA _IND
COM_RspData B

COM_DataExtract »

COM DATA_IND
OM_RspData

(OM_DataExtract
(OM_DataAlloc

2OM_DataSend
COM DATA CNF

Figure 4.2: Communication between the computer and Bluetooth.

Whenever a device receives a message, a Bluetooth event is called. Bluetooth events are events that are triggered by the API whenever certain conditions are met. In this case, the function OnComDataInd(void **ppMsg) is called when a message is successfully received. In this function, the data in the message is analyzed.

The data is displayed to the screen by calling the function ReceiveMessageFromServer(CString cStringToBeDisplayed) or ReceiveMessageFromClient(CString cStringToBeDisplayed). With some processing, this outputs the messages to the dialog box on the screen.

4.2 Communication between the Computers

The data encapsulation using the Bluetooth protocol has already been taken care of by both the Bluetooth devices and the Bluetooth API. The data transport discussed here is the communication between the two computers, using a simple.

The wireless client initiates the connection by sending an INITIATE_CONNECTION message, followed by the Yahoo! user ID, and then sends a PASSWORD message followed by the Yahoo! password. Over the Bluetooth connection this is secured using the Bluetooth protocol.

[image: image3.wmf]Mail

Client

Mail

Relay

Point

INITIATE_CONNECTION +

Username

PASSWORD +

Password

NUMBER_OF_MESSAGES +

Number of Messages

HEADERS_REQUEST

MESSAGE_HEADER +

1

 +

Sender

 +

Subject

MESSAGE_HEADER +

2

 +

Sender

 +

Subject

MESSAGE_HEADER +

Number Of Messages

 +

Sender

 +

Subject

.

.

.

SENT_ALL_HEADERS

BODY_REQUEST +

Message Number

MESSAGE_BODY_LINE +

1st Line

MESSAGE_BODY_LINE +

2nd Line

MESSAGE_BODY_LINE +

Last Line

.

.

.

SENT_BODY

Figure 4.3: Message passing protocol for the two systems.

The relay point receives the message, and then goes to the Yahoo! POP3 server and retrieves all of the messages. It then sends a NUMBER_OF_MESSAGES message followed by the number of messages back to the client.

The client replies with a HEADERS_REQUEST message, which is the standard message for replies and implies that the computers have not lost synchronization. The relay computer will then send a MESSAGE_HEADER followed by the message number, the sender and the subject. This will be repeated for each message in the Yahoo! POP3 server. After the last message is reached, the relay will send a SENT_ALL_HEADERS message.

When the user requests a specific message number, the client sends BODY_REQUEST followed by the message number. The relay will then send each line one at a time with a MESSAGE_BODY_LINE precluding the text of the line. When it reaches the end of the message, the relay computer will send a SENT_BODY message.

4.3 Post Office Protocol: Version 3

Post Office Protocol: Version 3, or POP3, was implemented using the functionality described below. This is a basic implementation of a POP3 client, but more functionality would not be difficult to add.

The POP3 server is connected to by a standard TCP/IP socket connection. When making a TCP/IP connection it is necessary to use a port. Computers use a variety of ports, the most noteworthy include the telnet port (23), the SSH port (22), the SMTP port (25) and the HTTP port (80). POP3 uses port 110 as the connection port.

The commands sent to the POP3 server are sent in ASCII text, and the data sent back from the server are also sent in ASCII text. For basic email messages, this works, but it needs another standard called MIME in order for attachments to be sent with the message. MIME converts the data in the object to be attached into ASCII text that can later be converted back to the original object.

Whenever an ASCII command is sent to the mail server, the mail server replies one of two ways. If the command is recognized and the data supplied with the command is correct, the server replies with a standard reply starting with “+OK” and then the rest of the data follows. If the command is unrecognized, or the arguments supplied with the command are not correctly specified, the server responds with a reply starting with “-ERR” possibly followed by an explanation of why the command wasn't processed properly.

4.3.1 Commands

There are many commands used in the POP3 system, but only a couple were used in this project. The commands that were used in this implementation of a POP3 client were as follows:

 USER PASS

 LIST RETR

 DELE QUIT

4.3.1.1 USER

The USER command is used to signify the user of the mailbox. Assuming that the username is “bkennedy” the command sent to the POP3 mail server would be “USER bkennedy” and the client would then wait for a response. The server will respond positively every time, regardless if the user exists or not.

4.3.1.2 PASS
PASS is the command used to send the password of the user. If the password is “123456” the command sent to the POP3 mail server would be “PASS 123456” and the client would then wait for a response. The server would respond positively if the password and the username line up, but would respond with an error if the password and the username didn't match. The password sent here is insecure as it is sent in plain ASCII text.

4.3.1.3 LIST
The LIST command has two functions depending on how it is used. If the command “LIST” is sent alone, the mail server will send a response that lists the total size of the mailbox on one line, for each message in the mailbox, and the server will send a line that includes the message number and the size of the individual message. If LIST is sent with a message number following it (i.e. “LIST 4”), then the server will reply with a positive, followed by the message number, then the size of the message. If there is no message (i.e. there is only 3 messages), then the server replies with a negative response.

4.3.1.4 RETR
RETR is used to get a text message and the MIME attachment. The headers and body are both included in this sequence. The command is used the same way “LIST” is used to get one message. If successful, the server replies with a positive reply and the size of the message on one line, then all of the headers follow, then the message body. The final line is a single period (.) that marks the end of the message. Below is an example of a mail message retrieved with the RETR command.

+OK 1235 octets

X-Apparently-To: mailman_bluetooth@yahoo.com via web21310.mail.yahoo.com; 02 Apr

 2002 13:36:22 -0800 (PST)

X-Track: 1: 100

Return-Path: <snowdog@ece.wpi.edu>

Received: from leon.WPI.EDU (EHLO leon.wpi.edu) (130.215.17.71)

 by mta444.mail.yahoo.com with SMTP; 02 Apr 2002 13:36:22 -0800 (PST)

Received: from ece.wpi.edu (snowdog@ece.wpi.edu [130.215.16.20])

 by leon.wpi.edu (8.9.3/8.9.3) with ESMTP id QAA11524

 for <mailman_bluetooth@yahoo.com>; Tue, 2 Apr 2002 16:36:20 -0500

Received: from localhost (snowdog@localhost)

 by ece.wpi.edu (8.11.2/8.11.2) with ESMTP id g32LaJI21724

 for <mailman_bluetooth@yahoo.com>; Tue, 2 Apr 2002 16:36:19 -0500 (EST)

Date: Tue, 2 Apr 2002 16:36:19 -0500 (EST)

From: Benjamin Kennedy <snowdog@ece.wpi.edu>

To: <mailman_bluetooth@yahoo.com>

Subject: here we go

Message-ID: <Pine.OSF.4.33.0204021634140.28871-100000@ece.wpi.edu>

MIME-Version: 1.0

Content-Type: TEXT/PLAIN; charset=US-ASCII

1 this line ends with a period.

2 this lines end in a question?

3 ending in a zero 0

4 this line goes on and on and on and on and on and on and on and on and

on until it wraps around and the ends in a perion.

6 the previous line was empty. this line ends in an exclamation!

Ben

.
Figure 4.4: Example message received with RETR

The different header fields that are used are described below in Section 4.3.2. This command will send back a positive with the number of the message for the first line, and a negative if the message does not exist for the number specified.

4.3.1.5 DELE
This command is used in conjunction with a message number to mark a message for deletion. The message is deleted when the client sends a “QUIT” command to the server, but once marked deleted, it cannot be accessed with the LIST or RETR commands.

4.3.1.6 QUIT

The client sends a “QUIT” command in order to terminate the connection from the server end. The client can also end the connection from the local end by just closing the connection, but the QUIT command has the added benefit of deleting any messages that are marked for deletion.

[image: image4.wmf]Mail Relay

Point

Mail Server

Open socket connection to port 110

Greet the client

Send "USER

username

"

Promp for Password

Send "PASS

password

"

Send number of message and size of mailbox

Send "LIST"

Send number of messages and size of each individual message

Send "RETR

Message Number

"

Send entire message (including headers) of

Message Number

The above is the login transaction, and it must take place in the order specified.

The following are done individually.

Send "DELE

Message Number

"

Send confirmation of message deletion

Send "QUIT"

Close the conenction

Figure 4.5: POP3 Command Progression

4.3.2 Headers

Any header name can be used, as long as it is in the proper format. The format, as the example shown in Figure 4.6, is to have the name of the header, followed by a colon, followed by a space, followed by the value for that header. If the value for the header takes more than one line, the next line of the header value is started with a white space (tab, space, etc.) and then the rest of the header value is sent. In the example below, the header name is “Date” and the header value is “Tue, 2 Apr 2002 16:36:19 -0500 (EST)”.

Date: Tue, 2 Apr 2002 16:36:19 -0500 (EST)

Figure 4.6: An example header value

As any header name can be used, only a few were examined in the POP3 client and implemented. From was used to determine the sender of the message, Date was used to put the messages in order, and Subject was used to display the subject of the message. The rest of the headers were saved in case they required further processing, but this application did nothing with them.

4.4 User Interface

There are two interfaces that need to be designed. The first is the initial connection of the two computers. The method for connection a Bluetooth device to the development computer was taken directly from the software provided with the development kit. Since each device has a different function one must be the server and one must be the client. In a real Bluetooth network, either should be able to handle the responsibility of being a server or a client, but for this project only one side of this was implemented. Setting up the system is described in Section 7.3.

4.4.1 User Interface for Setting up the Server

[image: image5.png]~Choose ifefface:
@) USB por.

- Register Server Servicss —

MailService.

jhborhood CONNECTED TO DEVICE: 0x008037141DF

€ Bluetooth™

Figure 4.7: UI for creating the server.

4.4.2 User Interface for Setting up Client

[image: image6.png][Bluetooth Neighborhood

-Device

GetDevices

Select Device

~Senvices
Address

Name.

(32t Bervices

Correst

Select Seryice

Close.

Figure 4.8: UI for creating the client.

4.4.3 UI for Reading Mail

The next step once the devices are connected is to show that the mail connection is properly working. The interface is very simplistic, but not much time was spent designing an interesting user interface. The user types their Yahoo! ID into the User ID field, and types their password into the field with the same name and logs in. The output section will show each message with the subject and sender. To read a message, the user enters the number of the message that they want to view and clicks the Read Message button. The text of the message will be displayed.

[image: image7.png]Bluetooth Chat Client

User D "
Passwod: [
Login

Mgt [et
essage

EndChat

Figure 4.9: The Dialog Box for the Mail Application

4.5 Objects Developed

4.5.1 POPConnection

In order to receive mail messages, the relay computer used the Post Office Protocol, or POP3. A class was written to handle the communication with the mail server. The class was called POPConnection and the functionality is described below.

POPConnection has two private member variables, CSocket popConnection and int iNumberOfMessages. popConnection is used to connect to the remote mail server and iNumberOfMessages will contain the number of messages in the user's mailbox.

4.5.1.1 The private member functions

CheckProtocolStatus() reads a line from popConnection. It then checks to see if there is are any errors, indicated by a “-ERR” preceding a message coming from the remote mail server. If there is not an error, the remote mail server should send a “+OK” as the beginning of the line received and the function returns the string read in.

SendCommand(const string_t & in_szCommand) send the command in_szCommand to the remote mail server and then calls CheckProtocolStatus() to see if the command went through correctly. If successful, the function returns the first line of reply from the command that was sent.

ReadLineFromSocket() reads all of the bytes in the incoming popConnection socket buffer, until it reaches a “\n\r” which is the POP3 indicator of a new line. It then returns the string, minus the newline characters.

SendData(const string_t &in_szCommand) is used to send the command in_szCommand to the remote computer in popConnection. The command has a “\n\r” added to it because that is the part of the POP3 command structure.

4.5.1.2 The public member functions

There are two constructors for the POPConnection class. Both take an IP address as an argument and open a connection to the mail server on port 110.

The class provides a method for logging in once a connection is made. The member function Login(const char * szUserName, const char *szPassword) takes a user name and corresponding password and allows the class more functionality. The command “USER un” and “PASS pw” where un is the user name and pw is the password is sent to the remote computer. If the user is successfully logged in, the function then sends a command “LIST” to get the number of messages in the mailbox. This is recorded in iNumberOfMessages.

GetEntireMessage(const int in_nMessageNumber) returns a string that contains the entire message referred to by the argument in_nMessageNumber. This string includes both the message body and the headers associated with the message. The function sends a command of “RETR x” where x is the message number. A POP3 mail message is terminated by a single period (.) at the end of the message. This function reads a single line at a time, checks to see if it is only a single period, and if it is not a period, add a newline character to the end of the current string and continue reading from the port. When a single period is reached, the function exits, returning the string that was just created.

DeleteMessage(const int in_nMessageNumber) removes the message indicated by in_nMessageNumber from the remote mail server. This is accomplished by sending a command “DELE x” to the remote mail server, where x is the number of the message to be removed.

Logout ()sends a command to the remote mail server that causes the remote mail server to terminate the connection to the Internet relay point. “QUIT” is the command needed to do this.

GetNumberOfMessages()returns the number of messages stored in the private member variable iNumberOfMessages.

The destructor of the class is closes the socket connection popConnection.

4.5.2 MailMessage

For efficient processing of the mail messages, a class, MailMessage, was created. The constructor takes as arguments, the message number and a string that contains the message body and all of the headers in the POP3 format.

Once the constructor is called, the message is parsed into each of the headers by the private member function SetHeaders(). The map from the standard template library is used to keep track of the headers, and the body of the message is given a header name of “BODY:” for storage purposes. The message is parsed by the following state table.

[image: image8.wmf]pt2

 = first occurance of

 "

", "

\n

", "

:

" or

npos

Enter

pt1

 = beginning,

pt2

 = beginning

Body

"

BODY:

" mapping =

pt1

to

npos

Header

tempHeader

 =

pt1

 to

pt2

;

pt1

 =

pt2

+1;

pt2

 = first

occurance of "

\n

"

Value

tempHeader

mapping =

pt1

 to

pt2

;

pt1

 =

pt2

+1

Extra Line Value

tempHeader

mapping +=

pt1

to

pt2

;

pt1

 =

pt2

+1

Exit

if

pt2

 =

npos

if

pt2

 = "

"

if

pt2

 = "

\n

"

if

pt2

 = "

:

"

Figure 4.10: The state machine for parsing the message. npos is the end of the string.

With the mail message sorted into the map template, the class method GetMessageHeader(const string & in_sHeader) returns the header value mapped by the header name in in_sHeader. An example of this is GetMessageHeader((string)"Subject:") will return the “Subject” line of the message and GetMessageHeader((string)"To:") will return the “To” line of the message. Other common headers are described in Section 4.3.2.

The MailMessage class has one more piece that we implemented, but wasn't used in the Bluetooth project. There is a boolean member variable, b_isMessageDeleted, the indicates whether or not the message is marked for deletion. There are two public member functions that are used to change the variable. They are SetDeleted() and ResetDeleted(). To find the delete status of the message, the function IsMarkedForDeletion() returns b_isMessageDeleted.

PAGE
15

_1081245790.vsd

_1081246598.bin

_1081247299.bin

_1081261038.vsd

_1081246516.bin

_1081244767.bin

_1081245091.vsd

_1081244140.vsd

