Dynamic Transmission Power Control in

Wireless Ad-hoc Networks
By Stuart Peloquin & Joe Cerra

April 14, 2005
EE194 Wireless Sensor Networks

Tufts University
To Professor C. Hwa Chang

Introduction

Wireless sensor networks have become an important area of study in the field of electrical engineering. These networks differ from traditional computer networks in a number of aspects, including the need to be cheap, self-sustaining, low-powered and relatively small. One large area of research is concentrated on reducing the power consumption of the individual nodes within a wireless network in order to maintain a long network lifetime and therefore requiring less maintenance. Discussed in this article are methods currently employed in the struggle to gain higher performance at lower energy costs as well as an approach to designing and simulating a protocol for decreasing overall power consumption of a dynamic wireless network.

There will be two types of power consumption discussed. Node power consumption considers the amount of power that a particular node uses throughout its lifetime. The amount of energy a single node consumes can be contributed to a number of factors, the main ones including the amount of time a node is actively computing, the amount of time a node is actually transmitting data, the type and speed at which data is transmitted and the focus of this paper, the amount of energy used during a single transmission.

The other type of power consumption is the amount of energy consumed by the network as a whole, or by a portion of the network. This energy can be quantized with similar metrics as single nodes, i.e. node processing power, node transmission power and node data size or can be attributed to the efficiency of data propagation throughout the entire network.

Currently deployed methods of reducing the individual and overall power are abundant and efficient. These methods can be broken down into a small set of categories.
· Transceiver based power reduction

· Managing sleep states

· Packet size

· Data retransmission rates

· Parent forwarding

· Routing

· Discover optimal routes quickly

· Efficient route updates and maintenance

· Diversify and make efficient multi-route decisions
· Hardware

· Processor power consumption

· Transmission strength and management

· Energy scavenging

· Memory considerations

Transceiver based power reduction includes effectively managing sleep states on a per node and per network level. While nodes can themselves perform a variety of useful processes, while they are computing, their power consumption is far greater than that of a node that is not performing computations. The current sleep state of a node is determined by the node itself, but many network based factors can be altered to improve sleep management. As an example, each node can be assigned a time slot to be alive and active; this can be centrally managed and can be an effective method to utilizing a node for short amounts of time only when needed.

Another method for sleep state management is using lower powered sensing components and low-powered receivers that can wake the central processing unit when needed.

Managing the frequency and size of packets is another important method of reducing overall power consumptions. Many methods are utilized including: data compressing, low transmission bandwidth and packet grouping. In packet grouping, a node or a parent node will collect multiple instances of data from multiple nodes and forward that information in one packet which results in smaller overhead. This method is only effective if real-time data is not crucial. If real-time data is needed, this will cause unwanted network lag.

Routing is another important factor in reducing the amount of power consumed by a network. By efficiently resolving new routes and managing old routes, a good routing protocol can send packets through the clearest, fastest and cheapest routes. The protocol should, however, take into account that the fastest route could become overused and cause an intermediate link node to become drained of power. The routing protocol should be able to choose between a few routes with relatively low power consumption in order to preserve the lifetime of all important nodes.

The implementation discussed in this paper tries to slightly improve the aspects of routing, but mostly concentrates on the hardware. Hardware considerations are very broad, and depending on how the term hardware is interpreted, can easily constitute the entirety of methods discussed above. The term is used here to discuss how the implementation and direct alterations to hardware can affect the power consumed by a particular node.

To begin, consider the most obvious component in a wireless node, the processor. The processor can be designed in two ways: it can be a generic processing design capable of performing many tasks at a wide range of speeds or it can be designed specifically for the task at hand. The latter will, if designed correctly, perform better than a generic computer will. The component can include a slower clock, transistors capable of losing less power at slower speeds, a transistor layout appropriate for the types of computations performed most and a smaller instruction set that will require far less hardware to power.

In addition to the processor, the power source can be modified to a specific application. If the device is used in a constantly lighted area or a loud or vibration intense surrounding and only requires an infrequent use of the transmitter, it is possible to outfit the device with energy scavenging components. These components try to gather ambient energy and convert it into useable power for the device. Some examples are photovoltaic cells which gather solar energy and pzieso-electric devices that can convert vibrations into useable power.

Another important hardware consideration is the size, speed and type of memory needed. Memory not only costs money to as a commodity, it also costs to keep it running. Each additional memory cell requires additional power. By limiting the amount of memory, power usage can be reduced. The size of memory storage isn’t the only important factor; the type of memory required is something entirely different. There exist two types of memory storage: volatile and non-volatile. Volatile memory will erase its contents if the power source is removed, where as non-volatile memory will not. By using non-volatile memory, when the processor goes to sleep, it can also completely power off a large portion of memory, greatly reducing power. This is an avenue without much online coverage and would be a great start for additional research.

While these methods can most-likely increase network efficiency, the focus of this paper lies within the possible power savings drawn through efficiently updating the transmission strength of individual nodes.

The power transmitted by a single node is a key component to a successful wireless sensor network. The larger the power is, the more likely that the packet will arrive at its destination, assuming that the power is not so great that it causes heavy channel congestion. So, increasing the signal strength of each node to an extent will also increase the efficiency of the network, however, there is no reason to send a packet with a high signal strength if it can reach the same destination with three fourths or one half of the power.

To determine how effective fine tuning the transmit strength can actually be, consider the effects of free space propagation on the signal strength when arriving at a destination. Classic propagation models show that the signal strength should degrade inversely proportional to the distance traveled squared.

Received strength ~
[image: image1.wmf](

)

2

1

dStrength

Transmitte

Classical propagation is accurate when the transmitter and receiver are very close and when there is not a large amount of fading occurring. Fading does occur naturally and is hard to model, so an adopted propagation model for received signal strength is inversely proportional to the transmitted strength to the fourth power. This model is statistically more accurate in wireless sensor networks which tend to be highly mobile, a factor that is show to decrease received signal strength.

Received strength ~
[image: image2.wmf](

)

4

1

dStrength

Transmitte

When considering the amount of loss a signal endures during transmission, it is fairly easy to see that sending between two nodes that are far away, or whose spatial relationship is unknown most likely requires a great deal of power. While two nodes that are close together require far less power to effectively communicate. The example below shows the potential power savings for a five hop, straight line transmission.

Assumptions:

Power needed ~ 1/d4

2.4 GHz

1 hop over 50m:
10nJ

1 hop over 10m:
16pJ

5 hops over 50m:
80pJ

Theoretical power savings: 99.2%

This does not account for additional awake time or increased probability of loss.

[image: image3]
http://bwrc.eecs.berkeley.edu/People/Faculty/jan/presentations/AmbientIntelligence.pdf
Proposed solution:

The problem of effectively altering the transmission power based on spatial relationships is not practical to implement on a per-node basis. Each node will most likely have no indication of the location of neighboring nodes unless location information, which can be gathered through triangulation or GPS, is available and propagated through the network. The case where location information is propagated may benefit from a spatial relationship based algorithm, but distance is not always the only factor in signal loss.

Instead, a combination of transmission strength and received signal strength is used to determine how much power is needed to transmit between two nodes. This method requires that the hardware provides two features. The power of the transmitter must be configurable. Ideally, the transmitter can accept any power level but most modern hardware allows the transmitter to be set to a limited number of pre-defined levels. This is acceptable, but not optimal. Also, the signal strength of an incoming message must be provided to the upper layers by the receiver. Both these features are a necessity.

The received signal strength alone is not enough. This signal strength is only a measure of the power seen at the receiver which is useless unless the strength at which the signal was transmitted is known. With the transmitted and received signal strength, the loss can be calculated and used to determine effective transmission strength.

There were multiple decisions made on which layer the bulk of information processing would take place. One consideration was to let the application layer handle the power decisions. This would enable the creator of any particular application to send high-powered signals if they so desired. But the benefits of abstracting this from the application out way the concerns of inflexibility. In the future, a flag or certain type of message can be implemented to allow for full power control at all layers of the model. Instead, the final decision was to allow the MAC protocol to decide the required strength of any given message.

In order for the MAC layer to make informed decisions about signal strength, the current surrounding layers need to be slightly modified. The MAC layer needs access to the RSSI of all signals, whether they are intended for this node or another. It also needs access to set the transmission strength of the node. Lastly, it needs a table of all known nodes and the transmit strength required to communicate with them.

The table is internal and can be left out of this portion of discussion. The RSSI and transmit strength information, however, have to cross model layer bounds. This is achieved by implementing a type of message passing. The packet undergoes a series of adding and stripping headers in order to pass all of the necessary information between layers. When a message is sent from the network layer to the MAC layer, the MAC protocol determines what the transmit strength of that message should be. The needed transmit strength is then added onto the message headers and sent to the radio interface. This information is read, but not removed at the radio and used to set the transmitter for this node. The radio then tacks on its own header information and sends it along the physical medium where it will be received by additional nodes.

Each node within range can listen in on this packet. When a radio receives the packet, it strips the radio header information and adds on an additional field containing the received signal strength and passes it to the MAC layer. At the MAC layer, the RSSI information and transmit strength information are read and stripped from the packet and the packet is forwarded to the next layer, the network layer.

This method of message passing is effective in communicating the necessary information as well as not violating the separate layer model. Another implementation would be to create a pseudo layer that contains a table of recently received packets as well as their transmitted and received signal strengths. This implementation would work, but message passing would still be required to forward the transmitted signal strength from one radio to another.

The algorithm currently employed to determine the transmission strength needed to send to any particular node is still in its infancy, but is effective in setting reasonable transmission strengths.

Each node is outfitted with a few constant values. Broadcast messages are all broadcast at a predefined power level. The simulations all use five dB as the broadcast strength; these messages appear with a destination of -1. Also, the receiver sensitivity threshold is -81dB. When routes are first discovered, the protocol sends out broadcast messages. The nodes that receive these messages record three things: the source of the current message, also known as the last hop, the transmitted power of the message and the received power of the message. These power levels are then all converted into dB and stored in a hash table. The MAC protocol, upon receiving a message compares the received signal strength to the sensitivity threshold and determines if the transmitted strength was too high or too low. It then records a predicted necessary signal strength in the hash table according to this rudimentary formula.

 power_divided = RSSI / (THRESHOLD + 3)

if (power_divided < 1)

neededPower = power - (power_divided)*5
else if (power_divided == 1)

neededPower = power;

else

neededPower = power + (power_divided)*5

This value is then used the next time a signal is sent to that particular node. This table is maintained in order to prevent nodes from sending to neighbors that are no longer in close proximity. Each entry in the hash table is given a time to live. If no message is received from any particular destination node before the ttl has expired, it will increase the power required to communicate with the node. If the power gets too large, the node will then be erased from the table until further communication transpires.

Experimentation

In order to test and simulate the proposed solution for effectively altering power transmission strength for wireless sensor networks, a simulation environment was chosen, JiST (Java in Simulation Time). JiST was recently created at Cornell and is still being further developed. There were three deciding factors for choosing this particular simulation environment. First, JiST comes with a package called SWANS (Scaleable Wireless Ad-hoc Network Simulation) that is built on top of JiST as a simulation environment for wireless sensor networks. Second, JiST and SWANS are coded in Java source code. This allowed for a GUI to be custom built to simulate and test direct simulated sensor networks. Finally, JiST and SWANS, still under development, is free to use and distribute by Cornel.

The initial learning curve for JiST is quite manageable. It is a very robust, yet a simple simulation environment that uses a byte code rewriter to dynamically rewrite Java code. There are few function calls for simulating time. SWANS, on the other hand, is quite complicated, and unless one is very familiar with the makeup of a wireless sensor networks structure, it is quite hard to pick up without much initial trial and error.

To simulate the purposed transmission power strength alteration algorithm, a GUI was developed. This GUI simply sets up the simulation, hooks up the various OSI layers of the simulation, and visually outputs each node’s location, power, destination and source IP address. This was accomplished by altering the code of several built in SWANS classes and by creating a few customized classes. Below is a list of all used classes in the simulation.
	Class Name
	GUI
	JiST
	SWANS
	Layer
	Function

	Mapper
	
	
	X
	NA
	Maps simulation entities

	Location
	
	
	X
	NA
	Describes node location

	Field
	
	
	X
	Physical
	Describes the simulation environment

	Placement
	
	
	X
	Physical
	Describes simulation field

	Mobility
	
	
	X
	Physical
	Describes the waypoint navigation of nodes

	Fading
	
	
	X
	Physical
	Describes signal fading

	Pathloss
	
	
	X
	Physical
	Describes path loss model for packet transmission

	RadioNoiseAdditive
	
	
	X
	Link
	Describes radio noise model

	RadioInfo
	
	
	X
	Link
	Information pertaining to each node's radio

	MacAddress
	
	
	X
	Mac
	IP address for nodes

	MacDumb
	
	
	X
	Mac
	Dummy Mac protocol, striped down version of 802.11

	NetAddress
	
	
	X
	Network
	Describes the physical network address for each node

	NetIp
	
	
	X
	Network
	Describes the physical network IP address for each node

	PacketLoss
	
	
	X
	Network
	Model for amount of packet loss for the network

	RouteAodv
	
	
	X
	Route
	Routes nodes using ad-hoc on-demand distance routing

	runtime.JistAPI
	
	X
	
	NA
	The simulation environment

	java.awt.*
	X
	
	
	NA
	AWT Java programming classes

	java.swing.*
	X
	
	
	NA
	SWING Java GUI classes

(Table 1, Classes used in simulation of purposed algorithm)
After creating a simulation, a method for dynamically updating transmit strength was implemented. The GUI simulation proved that the results were accurate and actually what was intended to happen.

Noteworthy source code for creating a GUI to simulate wireless sensor networks using JiST / SWANS is included in the Appendix. This source code does not cover all of the elements in simulating the WSN, but instead serves to illustrate to someone who has never created a GUI in JiST / SWANS a framework for doing so. Included are the following files: Heartbeat.java (used to set up the simulation and the GUI), AppHeatbeat.java (used as the application layer for the simulation), MyCanvas.java (class used to graphically display the simulation), MyNode.java (class used for storing information pertaining to individual nodes), and MacDumb.java (the MAC layer of the simulation, used to calculate transmit strength and RSSI data).
Conclusion

This project provided a great deal of insight into wireless sensor networks, wireless networking in general as well as the means to discover a great deal of information surrounding wireless hardware and communication protocols. Although numerical simulation data did not materialize in this project, the simulation results displayed the basic desired results from the project. Nodes using the modified transmission power protocol continued to send data at a much reduced power level. While this does not prove that a good or optimal protocol was designed, it does show that the research was headed in the correct direction.

In addition to providing a great learning experience with wireless sensor networks, their power consumption and conservation as well as wireless sensor network protocols, it also provided a strong introduction to simulation environments. Due to the large amount of coding that was involved in simulating the results, it helped in understanding how simulation environments work as well as how multiple small, unrelated models come together to model an entire wireless communication network.
APPENDIX:
JiST / SWANS Source Code
Heartbeat.java

//

// JIST (Java In Simulation Time) Project

// Timestamp: <heartbeat.java Tue 2004/04/06 11:57:52 barr pompom.cs.cornell.edu>

//

// Copyright (C) 2004 by Cornell University

// All rights reserved.

// Refer to LICENSE for terms and conditions of use.

package driver;

import jist.swans.Constants;

import jist.swans.misc.Util;

import jist.swans.misc.Mapper;

import jist.swans.misc.Location;

import jist.swans.field.Field;

import jist.swans.field.Placement;

import jist.swans.field.Mobility;

import jist.swans.field.Spatial;

import jist.swans.field.Fading;

import jist.swans.field.PathLoss;

import jist.swans.radio.RadioNoiseAdditive;

import jist.swans.radio.RadioInfo;

import jist.swans.mac.MacAddress;

import jist.swans.mac.MacDumb;

import jist.swans.mac.Mac802_11;

import jist.swans.net.NetAddress;

import jist.swans.net.NetIp;

import jist.swans.net.PacketLoss;

import jist.swans.app.AppHeartbeat;

import jist.swans.route.RouteAodv;

import jist.runtime.JistAPI;

import java.awt.*;

import javax.swing.*;

import javax.swing.border.*;

import javax.swing.JFrame;

import java.awt.Container;

import java.awt.BorderLayout;

/**

 * SWANS demo/test: heartbeat application.

 *

 * @author Rimon Barr <barr+jist@cs.cornell.edu>

 * @version $Id: heartbeat.java,v 1.16 2004/11/22 16:51:05 barr Exp $

 */

public class heartbeat extends JFrame {

 /** random waypoint pause time. */

 public static final int PAUSE_TIME = 30;

 /** random waypoint granularity. */

 public static final int GRANULARITY = 10;

 /** random waypoint minimum speed. */

 public static final int MIN_SPEED = 2;

 /** random waypoint maximum speed. */

 public static final int MAX_SPEED = 10;

 public static int nodes, length, time;

 public static Location loc;

 public JPanel Info;

 public static MyCanvas canvas;

 public int sizeX, sizeY;

 /**

 * Initialize simulation node.

 *

 * @param i node number

 * @param field simulation field

 * @param placement node placement model

 * @param radioInfoShared shared radio information

 * @param protMap shared protocol map

 * @param plIn incoming packet loss model

 * @param plOut outgoing packet loss model

 */

 public heartbeat() {

 //setup window, etc

 setName("JiST SWANS Simulation");

 System.out.println("Setting up GUI");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setDefaultLookAndFeelDecorated(true);

 setLocation(100, 100);

 sizeX = 1000;

 sizeY = 1000;

 setSize(sizeX, sizeY);

 Container content = getContentPane();

 content.setLayout(new BorderLayout());

 //MyCanvas setup

 canvas = new MyCanvas(this);

 content.add(canvas, BorderLayout.CENTER);

 //Menubar setup

 MyMenu m1 = new MyMenu(canvas);

 setJMenuBar(m1.getMenuBar());

 //Information Panel

 Info = new JPanel();

 Info.setBorder(new LineBorder(Color.darkGray, 2));

 Info.setPreferredSize(new Dimension(1000, 50));

 Info.setLayout(new GridLayout(3, 2));

 Info.add(new JLabel("number of nodes: " + nodes));

 Info.add(new MyButton("Run Sim", canvas));

 Info.add(new JLabel("field dimensions: " + length + " by " + length));

 Info.add(new MyButton("Pause Sim", canvas));

 Info.add(new JLabel("time in seconds: " + time));

 Info.add(new MyButton("End Sim", canvas));

 content.add(Info, BorderLayout.NORTH);

 show();

 }

 public static void createNode(int i,

 Field field, Placement placement,

 RadioInfo.RadioInfoShared radioInfoShared,

 Mapper protMap,

 PacketLoss plIn, PacketLoss plOut) {

 // create entities

 RadioNoiseAdditive radio = new RadioNoiseAdditive(i, radioInfoShared);

 MacDumb mac = new MacDumb(new MacAddress(i), radio.getRadioInfo());

mac.setCanvas(canvas, i);

 //Mac802_11 mac = new Mac802_11(new MacAddress(i), radio.getRadioInfo());

 NetIp net = new NetIp(new NetAddress(i), protMap, plIn, plOut);

 //routing

 RouteAodv route = new RouteAodv(new NetAddress(i));

 route.getProxy().start();

 net.setProtocolHandler(Constants.NET_PROTOCOL_AODV, route.getProxy());

 net.setRouting(route.getProxy());

 AppHeartbeat app = new AppHeartbeat(i, true);

 app.setNodes(nodes);

 // hookup entities

 field.addRadio(radio.getRadioInfo(), radio.getProxy(),

 placement.getNextLocation());

 field.startMobility(radio.getRadioInfo().getUnique().getID());

 radio.setFieldEntity(field.getProxy());

 radio.setMacEntity(mac.getProxy());

 mac.setRadioEntity(radio.getProxy());

 byte intId = net.addInterface(mac.getProxy());

 mac.setNetEntity(net.getProxy(), intId);

 route.setNetEntity(net);

 net.setProtocolHandler(Constants.NET_PROTOCOL_HEARTBEAT,

 app.getNetProxy());

 app.setNetEntity(net.getProxy());

 ///app.setRadioInfo(radioInfoShared); //hooks up radio transmit...

 app.getAppProxy().run(null);

 //set node power

 canvas.setNodePower(i, radioInfoShared.getPower());

 //System.out.println("power " + radioInfoShared.getPower());

 //canvas.setNodePower(i, 20);

 }

 /**

 * Initialize simulation field.

 *

 * @param nodes number of nodes

 * @param length length of field

 * @return simulation field

 */

 public static Field createSim(int nodes, int length) {

 Location.Location2D bounds = new Location.Location2D(length, length);

 Placement placement = new Placement.Random(bounds);

 Mobility mobility = new Mobility.RandomWaypoint(bounds, PAUSE_TIME,

 GRANULARITY, MAX_SPEED, MIN_SPEED);

 Spatial spatial = new Spatial.HierGrid(bounds, 5);

 Fading fading = new Fading.None();

 PathLoss pathloss = new PathLoss.FreeSpace();

 Field field = new Field(spatial, fading, pathloss, mobility,

 Constants.PROPAGATION_LIMIT_DEFAULT);

 //set canvas pointer

 field.setCanvas(canvas);

 RadioInfo.RadioInfoShared radioInfoShared = RadioInfo.createShared(

 Constants.FREQUENCY_DEFAULT, Constants.BANDWIDTH_DEFAULT,

 Constants.TRANSMIT_DEFAULT, Constants.GAIN_DEFAULT,

 Util.fromDB(Constants.SENSITIVITY_DEFAULT),

 Util.fromDB(Constants.THRESHOLD_DEFAULT),

 Constants.TEMPERATURE_DEFAULT,

 Constants.TEMPERATURE_FACTOR_DEFAULT,

 Constants.AMBIENT_NOISE_DEFAULT);

 Mapper protMap = new Mapper(Constants.NET_PROTOCOL_MAX);

 protMap.mapToNext(Constants.NET_PROTOCOL_AODV);

 protMap.mapToNext(Constants.NET_PROTOCOL_HEARTBEAT);

 PacketLoss pl = new PacketLoss.Zero();

 for (int i = 0; i < nodes; i++) {

 createNode(i, field, placement, radioInfoShared, protMap, pl, pl);

 }

 return field;

 }

 /**

 * Benchmark entry point: heartbeat test.

 *

 * @param args command-line parameters

 */

 public static void main(String[] args) {

 if (args.length < 3) {

 System.out.println(

 "syntax: swans driver.heartbeat <nodes> <length> <time>");

 System.out.println(" eg: swans driver.heartbeat 5 100 5");

 return;

 }

 nodes = Integer.parseInt(args[0]);

 length = Integer.parseInt(args[1]);

 time = Integer.parseInt(args[2]);

 new heartbeat();

 float density = nodes / (float) (length / 1000.0 * length / 1000.0);

 System.out.println("nodes = " + nodes);

 System.out.println("size = " + length + " x " + length);

 System.out.println("time = " + time + " seconds");

 System.out.print("Creating simulation nodes...");

 Field f = createSim(nodes, length);

 System.out.println("done.");

 System.out.println("Average density = " +

 f.computeDensity() * 1000 * 1000 + "/km^2");

 System.out.println("Average sensing = " + f.computeAvgConnectivity(true));

 System.out.println("Average receive = " + f.computeAvgConnectivity(false));

 JistAPI.endAt(time * Constants.SECOND);

 }

 public static void startSim() {

 String[] arg = new String[3];

 arg[0] = "10";

 arg[1] = "800";

 arg[2] = "20";

 main(arg);

 /*new heartbeat();

 System.out.print("Creating simulation nodes...");

 Field f = createSim(nodes, length);

 System.out.println("done.");

 System.out.println("Average density = " +

 f.computeDensity() * 1000 * 1000 + "/km^2");

 System.out.println("Average sensing = " + f.computeAvgConnectivity(true));

 System.out.println("Average receive = " + f.computeAvgConnectivity(false));

 //JistAPI.endAt(time * Constants.SECOND);*/

 }

 public static void endSim() {

 JistAPI.end();

 }

 public static void pauseSim() {

 while (true);

 }

 public static void showNeighbors(int node) {

 }

}

AppHeartbeat.java

//

// JIST (Java In Simulation Time) Project

// Timestamp: <AppHeartbeat.java Tue 2004/04/06 11:59:55 barr pompom.cs.cornell.edu>

//

// Copyright (C) 2004 by Cornell University

// All rights reserved.

// Refer to LICENSE for terms and conditions of use.

package jist.swans.app;

import jist.swans.mac.MacAddress;

import jist.swans.net.NetInterface;

import jist.swans.net.NetIp;

import jist.swans.net.NetAddress;

import jist.swans.misc.Message;

import jist.swans.misc.Util;

import jist.swans.Constants;

import jist.runtime.JistAPI;

import java.util.HashMap;

import java.util.Iterator;

import java.util.*;

/**

 * Heartbeat application.

 *

 * @author Rimon Barr <barr+jist@cs.cornell.edu&rt;

 * @version $Id: AppHeartbeat.java,v 1.13 2004/04/06 16:07:46 barr Exp $

 * @since SWANS1.0

 */

public class AppHeartbeat implements AppInterface, NetInterface.NetHandler

{

 //

 // neighbour table entry

 //

 /**

 * Neighbour entry information.

 */

 private static class NeighbourEntry

 {

 /** mac address of neighbour. */

 public MacAddress mac;

 /** heartbeats until expiration. */

 public int beats;

 }

 //

 // constants

 //

 /** minimum heartbeat period. */

 public static final long HEARTBEAT_MIN = 2 * Constants.SECOND;

 /** maximum heartbeat period. */

 public static final long HEARTBEAT_MAX = 5 * Constants.SECOND;

 /** throw out information older than FRESHNESS beats. */

 public static final short FRESHNESS = 5;

 //

 // messages

 //

 /**

 * Heartbeat packet.

 */

 private static class MessageHeartbeat implements Message

 {

 public int getSize()

 {

 return 0;

 }

 /** {@inheritDoc} */

 public void getBytes(byte[] b, int offset)

 {

 throw new RuntimeException("not implemented");

 }

 } // class: MessageHeartbeat

private class MessageRnd extends MessageHeartbeat

 {

 /** {@inheritDoc} */

 private int type;

 public int getType()

 {

return this.type;

}

public void setType(int i)

{

this.type = i;

}

 public MessageRnd(int i){

this.type = i;

}

}

 //

 // locals

 //

 /** network entity. */

 private NetInterface netEntity;

 /** self-referencing proxy entity. */

 private Object self;

 /** list of neighbours. */

 private HashMap neighbours;

 /** node identifier. */

 private int nodenum;

 /** whether to display application output. */

 private boolean display;

 //private Random generator;

private static int nodes;

 //

 // initialize

 //

 /**

 * Create new heartbeat application instance.

 *

 * @param nodenum node identifier

 * @param display whether to display application output

 */

 public AppHeartbeat(int nodenum, boolean display)

 {

 this.nodenum = nodenum;

 this.self = JistAPI.proxyMany(

 this, new Class[] { AppInterface.class, NetInterface.NetHandler.class });

 this.display = display;

 neighbours = new HashMap();

 //generator = new Random();

 }

///added

public void setNodes(int nodes)

{

this.nodes = nodes;

}

 //

 // entity

 //

 /**

 * Set network entity.

 *

 * @param netEntity network entity

 */

 public void setNetEntity(NetInterface netEntity)

 {

 this.netEntity = netEntity;

 }

 /**

 * Return self-referencing NETWORK proxy entity.

 *

 * @return self-referencing NETWORK proxy entity

 */

 public NetInterface.NetHandler getNetProxy()

 {

 return (NetInterface.NetHandler)self;

 }

 /**

 * Return self-referencing APPLICATION proxy entity.

 *

 * @return self-referencing APPLICATION proxy entity

 */

 public AppInterface getAppProxy()

 {

 return (AppInterface)self;

 }

 //

 // neighbour events

 //

 /**

 * Neighbour lost.

 *

 * @param mac mac adddress of neighbour lost

 */

 private void neighbourLost(MacAddress mac)

 {

 if(display)

 {

 System.out.println("("+nodenum+") lost neighbour: "+mac+", t="+Util.timeSeconds());

 }

 }

 /**

 * Neighbour discovered.

 *

 * @param mac mac address of neighbour discovered

 */

 private void neighbourDiscovered(MacAddress mac)

 {

 if(display)

 {

 System.out.println("("+nodenum+") found neighbour: "+mac+", t="+Util.timeSeconds());

 }

 }

 //

 // NetHandler methods

 //

 /** {@inheritDoc} */

 public void receive(Message msg, NetAddress src, MacAddress lastHop,

 byte macId, NetAddress dst, byte priority, byte ttl)

 {

 int type = ((MessageRnd)msg).getType();

 if (type == 1)

 {

 System.out.println("Node: " + this.nodenum + " Received ACK from: " + src);

 // ack, ignore

 }

 else {

System.out.println("Node: " + this.nodenum + " Received MSG from: " + src);

MessageRnd message = new MessageRnd(1);

//
message.setType(1);

netEntity.send (message,src,Constants.NET_PROTOCOL_HEARTBEAT,Constants.NET_PRIORITY_NORMAL,(byte)1);

} }

 //

 // AppInterface methods

 //

 /**

 * Compute random heartbeat delay.

 *

 * @return delay to next heartbeat

 */

 private long calcDelay()

 {

 return HEARTBEAT_MIN + (long)((HEARTBEAT_MAX-HEARTBEAT_MIN)*Constants.random.nextFloat());

 }

 /** {@inheritDoc} */

 public void run(String[] args)

 {

 // staggered beginning

 if(JistAPI.getTime()==0)

 {

 JistAPI.sleep(calcDelay());

 }

 // send heartbeat

 MessageRnd msg = new MessageRnd(0);

 int randi = this.nodenum;

 while (randi == this.nodenum){

 randi = (int)(Math.random() * 10);

}

 NetAddress sendto = new NetAddress(randi);

 System.out.println("Node: " + this.nodenum + " Sending message to: " + sendto);

 netEntity.send(msg, sendto, Constants.NET_PROTOCOL_HEARTBEAT,

 Constants.NET_PRIORITY_NORMAL, (byte)1);

 // process neighbour set

 Iterator it = neighbours.values().iterator();

 while(it.hasNext())

 {

 NeighbourEntry n = (NeighbourEntry)it.next();

 n.beats--;

 if(n.beats==0)

 {

 neighbourLost(n.mac);

 it.remove();

 }

 }

 // schedule next

 JistAPI.sleep(calcDelay());

 ((AppInterface)self).run();

 }

 /** {@inheritDoc} */

 public void run()

 {

 run(null);

 }

}

MyCanvas.java

// MyCanvas Class

package driver;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.border.*;

import java.io.*;

import java.util.*;

import jist.swans.route.RouteAodv;

import jist.swans.mac.MacDumb;

public class MyCanvas extends JComponent implements KeyListener, MouseListener,

 MouseMotionListener {

 //vars

 public Rectangle node;

 public heartbeat heart;

 public Graphics g;

 public MyNode mynode[];

 public RouteAodv route;

public MacDumb mac[];

 //set up MyCanvas

 public MyCanvas(heartbeat heart) {

 //set pointer to heartbeat

 this.heart = heart;

//set number of mac protocols

mac = new MacDumb[heart.nodes];

//set number of nodes

mynode = new MyNode[heart.nodes];

 //configure window

 setBorder(new LineBorder(Color.black, 2));

 addKeyListener(this);

 addMouseListener(this);

 addMouseMotionListener(this);

 }

 public void paintComponent(Graphics g) {

 //draw field

 int boundX = heart.sizeX / 2 - heart.length / 2;

 int boundY = heart.sizeY / 2 - heart.length / 2 - 50;

 this.g = g;

 Graphics2D g2 = (Graphics2D) g;

 g.setColor(Color.white);

 g.fill3DRect(boundX, boundY, heart.length, heart.length, true);

 //draw nodes

 for (int i = 0; i < this.heart.nodes; i++) {

 if (mynode[i] != null) {

 g.setColor(Color.black);

 g.drawRect(boundX + mynode[i].x, boundY + mynode[i].y, 4, 4);

 g.drawString("Node " + mynode[i].id, boundX + mynode[i].x,

 boundY + mynode[i].y - 5);

 g.drawString("Power " + mynode[i].power, boundX + mynode[i].x,

 boundY + mynode[i].y - 15);

 g.setColor(Color.red);

 g.drawArc(boundX + mynode[i].x -

 ((int) mynode[i].power * 3 + 50) / 2,

 boundY + mynode[i].y -

 ((int) mynode[i].power * 3 + 50) / 2,

 (int) mynode[i].power * 3 + 50,

 (int) mynode[i].power * 3 + 50, 0, 360);

 }

g.setColor(Color.blue);

/*for (int j=0; j<heart.nodes; j++)

{

if (mac[j] != null)

{

g.drawString(mac[j].toString(), 25, 25 + j*10);

}

}*/

 }

 //show us the route table every time

 if (route != null) {

 route.printPrecursors();

 route.printOutgoing();

 }

 }

public void setMac(MacDumb mac, int num)

{

this.mac[num] = mac;

}

 //javac -g -source 1.4 -classpath ..\libs\bcel.jar;..\libs\bsh.jar;..\libs\jargs.jar;..\libs\log4j.jar;..\libs\jython.jar;. driver*.java

 public void drawNode(int i, int x, int y, double power) {

 mynode[i] = new MyNode(i, x, y, power);

 repaint();

 }

public void setNode(int dest, int src, double power)

{

if (mynode[src] != null)

{

mynode[src].setPower(power);

mynode[src].setDest(dest);

}

}

 public void setNodePower(int i, double power) {

 //mynode[i].setPower(power);

 }

 public void setRoute(RouteAodv route) {

 this.route=route;

 }

 // Display message if up, down, left, or right arrow is pressed

 public void keyPressed(KeyEvent event) {

 if (event.getKeyCode() == 37) {

 System.out.println("LEFT Arrow Key Pressed");

 }

 if (event.getKeyCode() == 39) {

 System.out.println("RIGHT Arrow Key Pressed");

 }

 if (event.getKeyCode() == 40) {

 System.out.println("DOWN Arrow Key Pressed");

 }

 if (event.getKeyCode() == 38) {

 System.out.println("UP Arrow Key Pressed");

 }

 }

 public void keyReleased(KeyEvent event) {}

 public void keyTyped(KeyEvent event) {}

 //mouse calls

 public void mouseEntered(MouseEvent event) {

 this.requestFocus();

 }

 public void mousePressed(MouseEvent event) {}

 public void mouseClicked(MouseEvent event) {}

 public void mouseReleased(MouseEvent event) {}

 public void mouseExited(MouseEvent event) {}

 public void mouseDragged(MouseEvent event) {}

 public void mouseMoved(MouseEvent event) {}

 //simulation calls

 public void startSim() {

 //String[] args = { "5", "500", "100" };

 System.out.println("Starting Simulation");

 heart.startSim();

 }

 public void pauseSim() {

 System.out.println("Simulation Paused");

 heart.pauseSim();

 }

 public void endSim() {

 System.out.println("Endinging Simulation");

 heart.endSim();

 }

}

MyNode.java

// MyNode Class

package driver;

import java.util.*;

public class MyNode {

 //vars

 public int id;

 public int x;

 public int y;

public int dest;

public double power;

 //set up MyCanvas

 public MyNode(int id, int x, int y, double power) {

 //set vars

 this.id = id;

 this.x = x;

 this.y = y;

this.power = power;

 }

//set power

public void setPower(double power) {

this.power = power;

}

//set destination

public void setDest(int dest)

{

this.dest = dest;

}

 }
}

MacDumb.java
//

// JIST (Java In Simulation Time) Project

// Timestamp: <MacDumb.java Tue 2004/04/06 11:32:10 barr pompom.cs.cornell.edu>

//

// Copyright (C) 2004 by Cornell University

// All rights reserved.

// Refer to LICENSE for terms and conditions of use.

package jist.swans.mac;

import jist.swans.radio.RadioInterface;

//added

import jist.swans.radio.RadioNoiseAdditive;

import java.util.HashMap;

import java.util.Iterator;

//endadded

import jist.swans.radio.RadioInfo;

import jist.swans.net.NetInterface;

import jist.swans.misc.Message;

import jist.swans.Constants;

import jist.swans.misc.Util;

import jist.runtime.JistAPI;

import driver.MyCanvas;

/**

 * A dumb, pass-through mac implementation.

 *

 * @author Rimon Barr <barr+jist@cs.cornell.edu>

 * @version $Id: MacDumb.java,v 1.16 2004/11/02 02:13:12 barr Exp $

 * @since SWANS1.0

 */

public class MacDumb implements MacInterface

{

//added

private static class NeighbourEntry

 {

 /** mac address of neighbour. */

 public MacAddress mac;

 /** heartbeats until expiration. */

 public double RSSI;

public double neededPower;

 public double power;

public int beats;

}

public static final short FRESHNESS = 25;

private HashMap neighbours;

//endadded

 //

 // messages

 //

 /**

 * MacDumbMessage is the packet sent out by the MacDumb mac.

 * <pre>

 * src address: size=6

 * dst address: size=6

 * size: size=2

 * body: 0-65535

 * </pre>

 */

 public static class MacDumbMessage implements Message

 {

 /** fixed mac packet header length. */

 public static int HEADER_SIZE = 14;

 /** mac message source address. */

 private MacAddress src;

 /** mac message destination address. */

 private MacAddress dst;

 /** mac message payload. */

 private Message body;

 private double power;

 //private long time;

 /**

 * Create new mac packet.

 *

 * @param src source mac address

 * @param dst destination mac address

 * @param body mac packet payload

 */

 public MacDumbMessage(MacAddress src, MacAddress dst, Message body,double power)

 {

 this.src = src;

 this.dst = dst;

 this.body = body;

 this.power = power;

 }

 //

 // accessors

 //

 /**

 * Return mac message source.

 *

 * @return mac message source

 */

 public MacAddress getSrc()

 {

 return src;

 }

 /**

 * Return mac message destination.

 *

 * @return mac message destination

 */

 public MacAddress getDst()

 {

 return dst;

 }

 /**

 * Return mac message payload.

 *

 * @return mac message payload

 */

 public Message getPayload()

 {

 return body;

 }

public double getPower()

{

return power;

}

 //

 // message interface

 //

 /** {@inheritDoc} */

 public int getSize()

 {

 int size = body.getSize();

 if(size==Constants.ZERO_WIRE_SIZE)

 {

 return Constants.ZERO_WIRE_SIZE;

 }

 return HEADER_SIZE+size;

 }

 /** {@inheritDoc} */

 public void getBytes(byte[] msg, int offset)

 {

 throw new RuntimeException("rimtodo: not implemented");

 }

 /** {@inheritDoc} */

 public String toString()

 {

 return "macdumb(payload="+body+")";

 }

 } // class: MacDumbMessage

 //

 // locals

 //

 // entities

 /** radio entity. */

 private RadioInterface radioEntity;

 /** network entity. */

 private NetInterface netEntity;

 /** network interface identifier. */

 private byte netId;

 /** self-referencing proxy entity. */

 private final MacInterface self;

 // state

 /** radio mode: transmit, receive, etc. */

 private byte radioMode;

 /** local mac address. */

 private MacAddress localAddr;

 /** link bandwidth. */

 private final int bandwidth;

 /** whether in promiscuous mode. */

 private boolean promisc;

//added

public MyCanvas canvas;

public void setCanvas(MyCanvas canvas, int num)

{

this.canvas = canvas;

canvas.setMac(this, num);

}

 //

 // initialize

 //

 /**

 * Create a new "dumb" mac entity. Does not perform any collision

 * avoidance or detection. Simply does not transmit (drops) packet

 * if it is current receiving.

 *

 * @param addr local mac address

 * @param radioInfo radio information

 */

 public MacDumb(MacAddress addr, RadioInfo radioInfo)

 {

 this.localAddr = addr;

 bandwidth = radioInfo.getShared().getBandwidth() / 8;

 radioMode = Constants.RADIO_MODE_IDLE;

 promisc = Constants.MAC_PROMISCUOUS_DEFAULT;

 self = (MacInterface)JistAPI.proxy(this, MacInterface.class);

 //added

 neighbours = new HashMap();

 //endadded

 }

 //

 // accessors

 //

 /**

 * Set promiscuous mode (whether to pass all packets through).

 *

 * @param promisc promiscuous flag

 */

 public void setPromiscuous(boolean promisc)

 {

 this.promisc = promisc;

 }

 //

 // entity hookup

 //

 /**

 * Hook up with the network entity.

 *

 * @param net network entity

 * @param netid network interface number

 */

 public void setNetEntity(NetInterface net, byte netid)

 {

 if(!JistAPI.isEntity(net)) throw new IllegalArgumentException("expected entity");

 this.netEntity = net;

 this.netId = netid;

 }

 /**

 * Hook up with the radio entity.

 *

 * @param radio radio entity

 */

 public void setRadioEntity(RadioInterface radio)

 {

 if(!JistAPI.isEntity(radio)) throw new IllegalArgumentException("expected entity");

 this.radioEntity = radio;

 }

 /**

 * Return self-referencing proxy entity.

 *

 * @return proxy entity

 */

 public MacInterface getProxy()

 {

 return self;

 }

 /** {@inheritDoc} */

 public String toString()

 {

 return "MacDumb:"+localAddr;

 }

 //

 // MacInterface methods

 //

 /** {@inheritDoc} */

 public void setRadioMode(byte mode)

 {

 this.radioMode = mode;

 }

 /** {@inheritDoc} */

 public void peek(Message msg)

 {

 }

 /** {@inheritDoc} */

 public void receive(Message msg)

 {

//added

RadioNoiseAdditive.MessageRNA message = (RadioNoiseAdditive.MessageRNA)msg;

double RSSI = message.getRSSI();

MacDumbMessage mdm = (MacDumbMessage)message.getPayload();

 //if (mdm.getSrc() == null) System.out.println("YOOOOOOOO1");

NeighbourEntry n = (NeighbourEntry)neighbours.get(mdm.getSrc());

 if(n==null)

 {

 n = new NeighbourEntry();

 neighbours.put(mdm.getSrc(), n);

 }

 //if (localAddr == null) System.out.println("YOOOOOOOO2");

 System.out.println("Received message at node: " + localAddr + " with sent power: " + mdm.getPower() + " and RSSI: " + RSSI + " from node: " + mdm.getSrc());

 n.mac = mdm.getSrc();

 n.RSSI = RSSI;

 n.power = mdm.getPower();

 double power_divided = n.RSSI / (Constants.THRESHOLD_DEFAULT + 3);

 if (power_divided < 1)

 {

 n.neededPower = n.power - 1/(power_divided);

 }

 else

 n.neededPower = n.power + (power_divided);

n.beats = FRESHNESS;

//endadded

 //MacDumbMessage mdm = (MacDumbMessage)msg; //uncomment

 JistAPI.sleep(Constants.LINK_DELAY);

 if(MacAddress.ANY.equals(mdm.getDst()))

 {

 if(netEntity!=null) netEntity.receive(mdm.getPayload(), mdm.getSrc(), netId, false);

 }

 else if(localAddr.equals(mdm.getDst()))

 {

 if(netEntity!=null) netEntity.receive(mdm.getPayload(), mdm.getSrc(), netId, false);

 }

 else if(promisc)

 {

 if(netEntity!=null) netEntity.receive(mdm.getPayload(), mdm.getSrc(), netId, true);

 }

 }

 /**

 * Compute packet transmission time at current bandwidth.

 *

 * @param msg packet to transmit

 * @return time to transmit given packet at current bandwidth

 */

 private long transmitTime(Message msg)

 {

 int size = msg.getSize();

 if(size==Constants.ZERO_WIRE_SIZE)

 {

 return Constants.EPSILON_DELAY;

 }

 return size * Constants.SECOND/bandwidth;

 }

 /** {@inheritDoc} */

 public void send(Message msg, MacAddress nextHop)

 {

//added maintain neigbours

 Iterator it = neighbours.values().iterator();

 while(it.hasNext())

 {

 NeighbourEntry n = (NeighbourEntry)it.next();

 n.beats--;

 if(n.beats==0)

 {

n.neededPower += 1;

if (n.neededPower > 15)

{

n.neededPower = 15;

}

 //it.remove();

n.beats = 3;

}

}

 //endadded

 JistAPI.sleep(Constants.LINK_DELAY);

 if(radioMode==Constants.RADIO_MODE_IDLE)

 {

//added

 NeighbourEntry n = (NeighbourEntry)neighbours.get(nextHop);

 double power = 15;

 if(n!=null)

 {

System.out.println(localAddr + " Has entry for " + n.mac + " transmitted power: " + n.power + " and RSSI: " + n.RSSI);

power = n.neededPower;

System.out.println(localAddr + " Sending to " + n.mac + " with transmitted power: " + power);

 }

 MacDumbMessage mdm = new MacDumbMessage(this.localAddr, nextHop, msg, power);

canvas.setNode(nextHop.addr,this.localAddr.addr, power);

//endadded

//MacDumbMessage mdm = new MacDumbMessage(this.localAddr, nextHop, msg);

 final long transmitTime = transmitTime(mdm);

 radioEntity.transmit(mdm, 0, transmitTime);

 JistAPI.sleep(transmitTime+Constants.EPSILON_DELAY);

 }

 if(netEntity!=null) netEntity.pump(netId);

 }

}

LIST OF REFERENCES
A Multi-channel MAC Protocol with Power Control for Multi-hop Mobile Ad Hoc Networks

http://pages.cpsc.ucalgary.ca/~caox/papers/multichannel02.pdf
An Evaluation of Transmit Power Levels for Node Localization on the Mica2

Sensor Node

http://groups.csail.mit.edu/robotics/journal_club/papers/nana.dankwa.ee.pdf
Distributed Algorithms for Transmission Power Control in Wireless Sensor Networks

http://bwrc.eecs.berkeley.edu/People/Grad_Students/czhong/documents/kubischtxCtrl.pdf
How Motes Work

http://computer.howstuffworks.com/mote4.htm
Introduction to Wireless Sensor Networks

http://www.engineering.uiowa.edu/~ece195/2005/lectures/lecture03.ppt
JIST / SWANS

http://jist.ece.cornell.edu/

http://jist.ece.cornell.edu/docs/040325-yorku.pdf

http://jist.ece.cornell.edu/docs/040108-swans-dsr.pdf
MICA 2

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/6020-0042-06_B_MICA2.pdf
TinySec: A Link Layer Security Architecture for Wireless Sensor Networks

http://www.eecs.harvard.edu/~mdw/course/cs263/fa04/papers/tinysec-sensys04.pdf

50 m

50 m

10 m

_1174994541.unknown

_1174994547.unknown

