
Topic 1: Basic probability

• Review of sets

• Sample space and probability measure

• Probability axioms

• Basic probability laws

• Conditional probability

• Bayes’ rules

• Independence

• Counting
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Definition of Sets

• A set S is a collection of objects, which are the elements of the set.

– The number of elements in a set S can be finite

S = {x1, x2, . . . , xn}

or infinite but countable

S = {x1, x2, . . .}

or uncountably infinite.

– S can also contain elements with a certain property

S = {x | x satisfies P}

• S is a subset of T if every element of S also belongs to T

S ⊂ T or T ⊃ S

If S ⊂ T and T ⊂ S then S = T .

• The universal set Ω is the set of all objects within a context. We then

consider all sets S ⊂ Ω.
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Set Operations and Properties

• Set operations

– Complement Ac: set of all elements not in A

– Union A ∩ B: set of all elements in A or B or both

– Intersection A ∪ B: set of all elements common in both A and B

– Difference A − B: set containing all elements in A but not in B.

• Properties of set operations

– Commutative: A ∩ B = B ∩ A and A ∪ B = B ∪ A.

(But A − B 6= B − A).

– Associative: (A ∩ B) ∩ C = A ∩ (B ∩ C) = A ∩ B ∩ C. (also for ∪)

– Distributive:

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

– DeMorgan’s laws:

(A ∩ B)c = Ac ∪ Bc

(A ∪ B)c = Ac ∩ Bc
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Elements of probability theory

A probabilistic model includes

• The sample space Ω of an experiment

– set of all possible outcomes

– finite or infinite

– discrete or continuous

– possibly multi-dimensional

• An event A is a set of outcomes

– a subset of the sample space, A ⊂ Ω.

– special events: certain event: A = Ω , null event: A = ∅

The set of events F is the set of all possible subsets (events A) of Ω.

• A probability law P (A) that defines the likelihood of an event A.

Formally, a probability space is the triplet {Ω,F , P (A)}.
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The probability axioms

• A probability measure P (A) must satisfy the following axioms:

1. P (A) ≥ 0 for every event A

2. P (Ω) = 1

3. If A1, A2, . . . are disjoint events, Ai ∩ Aj = ∅, then

P

(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

P (Ai)

• Notes:

– These axioms are called non-negativity, normalization, and

additivity, respectively.

– The probability measure in a sense is like other measures such as

mass, length, volume – all satisfy axioms 1 and 3

– The probability measure, however, is bounded by 1 (axiom 3). It

also has other aspects such as conditioning, independence that are

unique to probability.

– P (∅) = 0, but P (A) = 0 does not necessarily imply A = ∅.
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Discrete Probability Space

• The sample space Ω is discrete if it is countable.

– It can be finite or infinite (countably infinite).

• Examples:

– Rolling a dice: Ω = {1, 2, . . . , 6}

– Flipping a coin until the first head appears: Ω = {H, TH, TTH, . . .}

– Number of users connecting to the cellular network in 1 minute

intervals: Ω = {0, 1, 2, 3, . . .}

• The probability measure P (A) can be defined by assigning a probability

to each single outcome event {si} (or elementary event) such that

P (si) ≥ 0 for every si ∈ Ω
∑

si∈Ω

P (si) = 1

– Probability of any event A = {s1, s2, . . . , sk} is

P (A) = P (s1) + P (s2) + . . . + P (sk)

– If Ω consists of n equally likely outcomes, then P (A) = k/n.
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Continuous Probability Space

• The sample space Ω is continuous if it is uncountable infinite.

• Examples:

– Call arrival time: Ω = (0,∞)

– Random dot in a unit-square image: Ω = (0, 1)2

• For continuous Ω, the probability measure P (A) cannot be defined by

assigning a probability to each outcome.

– For any outcome s ∈ Ω, P (s) = 0

Note: A zero-probability event does not imply that the event cannot

occur, rather it occurs very infrequently, given that the set of

possible outcomes is infinite.

– But we can assign the probability to an interval.

For example, to define the uniform probability measure over (0, 1),

assign P ((a, b)) = b − a to all intervals with 0 < a, b < 1.
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Basic probability laws

• If A ⊂ B then P (A) ≤ P (B)

• Complement

P (Ac) = 1 − P (A)

• Joint probability

P (A ∩ B) = P (A) + P (B) − P (A ∪ B)

• Union

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

• Union of event bound

P

(

N
⋃

i=1

Ai

)

≤
N
∑

i=1

P (Ai)

• Total probability law: Let S1, S2, . . . be events that partition Ω, that is,

Si ∩ Sj = ∅ and
⋃

i Si = Ω. Then for any event A

P (A) =
∑

i

P (A ∩ Si)
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Conditional Probability

• Conditional probability is the probability of an event A, given partial

information in the form of an event B. It is defined as

P (A|B) =
P (A ∩ B)

P (B)
, with P (B) > 0

– Conditional probability P (.|B) can be viewed as a probability law

on the new universe B.

– P (.|B) satisfies all the axioms of probability.

P (Ω|B) = 1

P (A1 ∪ A2|B) = P (A1|B) + P (A2|B) for A1 ∩ A2 = ∅

• The conditional probability of A given B – the a posteriori probability

of A – is related to the unconditional probability of A – the a priori

probability – as

P (A|B) =
P (B|A)

P (B)
P (A)
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• Chain rules:

P (A ∩ B) = P (B)P (A|B) = P (A)P (B|A)

P (∩n
i=1Ai) = P (A1)P (A2|A1)P (A3|A1 ∩ A2) . . . P

(

An| ∩
n−1

i=1
Ai

)

• Examples: Radar detection, the false positive puzzle.
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Bayes’ rule

• Let S1, S2, . . . , Sn be a partition of the sample space Ω. We know

P (Si).

• Suppose an event A occurs and we know P (A|Si). What is the a

posteriori probability P (Si|A)?

• Bayes’ rule:

P (Si|A) =
P (Si ∩ A)

P (A)
=

P (A|Si)
∑n

i=1
P (Si)P (A|Si)

P (Si)

– Prove by using the total probability law.

– Bayes’ rule also applies to a countably infinite partition (n → ∞).

• Example: Binary communication channel.
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Independence

• Two events A and B are independent if

P (A ∩ B) = P (A)P (B)

– In terms of conditional probability, if P (B) 6= 0, then

P (A|B) = P (A)

That is, B does not provide any information about A.

– Independence does not mean mutually exclusive.

Mutually exclusive events with non-zero probability (P (A) 6= 0 and

P (B) 6= 0) are not independent since

P (A ∩ B) = 0 6= P (A)P (B)

• Independence of multiple events: {Ak}, k = 1, . . . , n are independent iff

for any set of m events (2 ≤ m ≤ n)

P (Ak1
∩ Ak2

∩ . . . ∩ Akm
) = P (Ak1

)P (Ak2
) . . . P (Akm

)

– For example, 3 events {A1, A2, A3} are independent if the following
ES150 – Harvard SEAS 12



expressions all hold:

P (A ∩ B ∩ C) = P (A)P (B)P (C)

P (A ∩ B) = P (A)P (B)

P (B ∩ C) = P (B)P (C)

P (A ∩ C) = P (A)P (C)

– Note: It is possible to construct sets of 3 events where the last three

equations hold but the first one does not.

Example: Let Ω = {1, 2, 3, 4, 5, 6, 7} where

P (1) = P (2) = P (3) = P (4) = P (5) = P (6) =
1

8
, P (7) =

1

4

Now let A = {1, 2, 7}, B = {3, 4, 7}, and C = {5, 6, 7}. What are the

probabilities of these events and their intersections?

– It is also possible for the first equation to hold while the last three

do not.

• Pair-wise independence: If every pair (Ai, Aj) (i 6= j) are independent,

we say Ak are pair-wise independent.

– Independence implies pair-wise independence, but not the reverse.
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• Independent experiments: The most common application of the

independence concept is to assume separate experiments are

independent.

– Example: A message of 3 bits is transmitted over a noisy line. Each

bit is received with a probability of error 0 ≤ p ≤ 1

2
, independent of

all other bits.

What is the probability of the receiving at least two bits correctly?

• Conditional independence: A and B are independent given C if

P (A ∩ B|C) = P (A|C)P (B|C)

– Independence does not imply conditional independence.

Example: Consider 2 independent coin tosses, each with equally

likely outcome of H and T. Define

A = { 1st toss is H }

B = { 2nd toss is H }

C = { Two tosses have different results }

– Vice-versa, conditional independence does not imply independence.
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Counting

• In many experiments with finite sample spaces, the outcomes are

equally likely.

• Then computing the probability of an event reduces to counting the

number of outcomes in the event.

• Assume that there are n distinct objects. We want to count the

number of sets A with k elements, denoted as Nk.

– Counting is similar to sampling from a population.

– The count Nk depends on

∗ If the order of objects matters within the set A.

∗ If repetition of objects is allowed within the set A (replacement

within the population).

• The sampling problem

– Ordered sampling with replacement: Nk = nk

– Ordered sampling without replacement:

Nk = n(n − 1) . . . (n − k + 1) =
n!

(n − k)!
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Permutations: n! = n(n − 1) . . . 1 (when k = n)

– Unordered sampling without replacement:

Nk =

(

n

k

)

=
n!

k!(n − k)!

– Unordered sampling with replacement:

Nk =

(

n + k − 1

k

)
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