Topic 2: Scalar random variables

- Discrete and continuous random variables
- Probability distribution and densities (cdf, pmf, pdf)
- Important random variables
- Expectation, mean, variance, moments
- Markov and Chebyshev inequalities
- Testing the fit of a distribution to data

ES150 – Harvard SEAS

Definition of random variables

- A random variable is a function that assigns a real number, X(s), to each outcome s in a sample space Ω .
 - $\ \Omega$ is the domain of the random variable
 - The set R_X of all values of X is its $range \Rightarrow R_X \subset \mathcal{R}$.
- The notation $\{X \leq x\}$ denotes a subset of Ω consisting of all outcomes s such that $X(s) \leq x$. Similarly for \geq , = and \in .
- The function as a random variable must satisfy two conditions:
 - The set $\{X \leq x\}$ is an event for every x.
 - The probability of the events $\{X = \infty\}$ and $\{X = -\infty\}$ is zero:

$$P\{X = \infty\} = P\{X = -\infty\} = 0$$

Random variables

A random variable can be either discrete, continuous, or of mixed type.

$$X(s): \Omega \to R_X$$

• Discrete variable: The range R_X is discrete, it can be either finite or countably infinite

$$R_X = \{x_1, x_2, \ldots\}$$

The sample space Ω can be discrete, continuous, or a mixture of both. X(s) partitions Ω into the sets $\{S_i | X(s) = x_i \ \forall s \in S_i\}$.

- Continuous variable: The range is continuous. The sample space must also be continuous.
- Mixed type: The range is a combination of discrete values and continuous regions.

ES150 - Harvard SEAS

Distribution function

The distribution function of a random variable relates to the probability of an event described by the random variable. It is defined as

$$F_X(x) = P\{X \le x\}$$

Properties of $F_X(x)$:

- $0 \le F_X(x) \le 1$
- $F(\infty) = 1$ and $F(-\infty) = 0$
- It is a non-decreasing function of x

$$x_1 < x_2 \quad \to \quad F_X(x_1) \le F_X(x_2)$$

• It is continuous from the right

$$F_X(x^+) = \lim_{\epsilon \to 0} F_X(x+\epsilon) = F_X(x)$$

•
$$P\{X > x\} = 1 - F_X(x)$$

- $P\{X = x\} = F_X(x) F_X(x^-)$
- $P\{x_1 < X \le x_2\} = F_X(x_2) F_X(x_1)$

ES150 – Harvard SEAS

4

The distribution of different types of random variables

Discrete: F_X(x) is a stair-case function of x with jumps at a countable set of points {x₀, x₁,...}

$$F_X(x) = \sum_k p_X(x_k)u(x - x_k)$$

where $p_X(x_k)$ is the probability of $\{X = x_k\}$.

• Continuous: $F_X(x)$ is continuous everywhere and can be written as an integral of a non-negative function

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

The continuity implies that at any point x, $P\{X = x\} = F_X(x^+) - F_X(x) = 0.$

• Mixed: $F_X(x)$ has jumps on a countable set of points but is also continuous on at least one interval.

We will mostly study discrete and continuous random variables.

ES150 – Harvard SEAS

Discrete random variables – Pmf

A discrete random variable can be completely specified by its *probability* mass function $p_X(x)$

$$p_X(x) = P\{X = x\}$$
 for $x \in R_X$

- $p_X(x) \ge 0$ for any $x \in R_X$
- $\sum_{k} p_X(x_k) = 1$ for all $x_k \in R_X$
- For any set A

$$P(X \in A) = \sum_{k} p_X(x_k) \text{ for all } x_k \in A \cap R_X$$

We use $X \sim p_X(x)$ or just simply $X \sim p(x)$ to denote discrete random variable X with pmf $p_X(x)$ or p(x).

Some important discrete random variables

• Bernoulli: The success or failure of an experiment (Bernoulli trial).

$$p_X(x) = \begin{cases} p & \text{if } x = 1\\ 1 - p & \text{if } x = 0 \end{cases}$$

– Example: Flipping a bias coin.

• *Binomial*: The number of successes in a sequence of *n* independent Bernoulli trials.

$$p_X(k) = \binom{n}{k} p^k (1-p)^{N-k}$$
 for $k = 0, ..., n$

- Example: The number of heads in n independent coin flips.

• Geometric: The number of trials until the first success.

$$p_X(k) = (1-p)^{k-1}p$$
 for $k = 1, 2, \dots$

The geometric probability is strictly decreasing with k.

- Example: The number of coin flips until the first head shows up. $\ensuremath{\mathsf{ES150}}\xspace$ – $\ensuremath{\mathsf{Harvard}}\xspace$ SEAS

• *Poisson*: Number of occurrences of an event within a certain time period or region in space.

$$p_X(k) = \frac{\alpha^k}{k!} e^{-\alpha}$$
 for $k = 1, 2, ...$

where $\alpha \in \mathcal{R}^+$ is the average number of occurrences.

- The Poisson probabilities can approximate the binomial probabilities. If n is large and p is small, then for $\alpha = np$

$$p_X(k) = \binom{n}{k} p^k (1-p)^{N-k} \approx \frac{\alpha^k}{k!} e^{-\alpha}$$

The approximation becomes exact in the limit of $n \to \infty$, provided $\alpha = np$ is fixed.

Continuous random variables – Pdf

A continuous random variable can be completely specified by its *probability density function*, which is a nonnegative function such that

$$F_X(x) = \int_{-\infty}^x f_X(t) \, dt$$

Properties of $f_X(x)$:

- $f_X(x) = \frac{dF_X(x)}{dx}$
- $f_X(x) \ge 0$ for all $x \in \mathcal{R}$
- $\int_{-\infty}^{\infty} f_X(x) dx = 1$
- $P{X \in A} = \int_A f_X(x) dx$ for any event $A \in \mathcal{R}$
- $P\{x_1 < X \le x_2\} = \int_{x_1}^{x_2} f_X(x) dx$

However, $f_X(x)$ should not be interpreted as the probability at X = x. In fact, $f_X(x)$ is *not* a probability measure since it can be > 1.

ES150 – Harvard SEAS

Some important continuous random variables

• Uniform
$$U[a, b]$$
:

$$f_X(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{for } x > b \end{cases}$$

- Example: A wireless signal $x(t) = A\cos(\omega t + \theta)$ has the phase $\theta \sim U[-\pi, \pi]$ because of random scattering.
- Exponential: $X \sim \exp(\lambda)$

$$f_X(x) = \lambda e^{-\lambda x}$$
, $\lambda > 0$, $x \ge 0$

- Examples: The arrival time of packets at an internet router, cell-phone call durations can be modeled as exponential RVs.
- Gaussian (normal): $X \sim \mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) , \quad \sigma > 0 , \ -\infty < x < \infty$$

– When $\mu=0$ and $\sigma=1,$ we call f(x) the standard~Gaussian density. ES150 – Harvard SEAS

9

- The Gaussian distribution is very important and is often used in EE, for example, to model thermal noise in circuits, in communication and control systems.
- It also arises naturally from the sum of independent random variables. We will study more about this in a later lecture.
- The Q function

$$Q(\alpha) = \Pr[x \ge \alpha] = \frac{1}{\sqrt{2\pi}} \int_{\alpha}^{+\infty} e^{-x^2/2} dx$$

- * Often used to calculate the error probability in communications.
- * Has no closed-form but good approximations exist.
- * A related function is the complementary error function

$$\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{+\infty} e^{-x^2} dx = 2Q\left(\sqrt{2}z\right)$$

Matlab has the command $\operatorname{erfc}(z)$.

• Chi-square: $X \sim \mathcal{X}_k^2$

$$f_X(x) = \frac{x^{k/2-1}e^{-x/2}}{\Gamma(k/2)2^{k/2}}, \quad x \ge 0, \quad \text{where} \ \ \Gamma(p) := \int_0^\infty z^{p-1}e^{-z}dz$$

ES150 – Harvard SEAS

- Here k is called the *degree of freedom*. When k is an integer, $\Gamma(k) = (k-1)! = (k-1)(k-2) \dots 2 \cdot 1$
- The chi-squared random variable X arises from the sum of k i.i.d. standard Gaussian RVs

$$X = \sum_{i=1}^{k} Z_i$$
, $Z_i \sim \mathcal{N}(0,1)$, independent

- A \mathcal{X}_2^2 random variable (k=2) is the same as $\exp(\frac{1}{2})$.
- *Rayleigh*:

$$f_X(x) = \frac{x}{\lambda^2} e^{-(x/2)^2/2} , \quad x \ge 0$$

- Example: The magnitude of a wireless signal.
- Cauchy: $X \sim \text{Cauchy}(\lambda)$

$$f_X(x) = \frac{\lambda/\pi}{\lambda^2 + x^2}$$
, $-\infty < x < \infty$

- The Cauchy random variable arises as the tangent of a uniform RV.

Expectation

The *expected value* (also called *expectation* or *mean*) of a random variable X is defined

• for continuous X as:

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

• for discrete X as:

$$E[X] = \sum_{k} x_k p_X(x_k)$$

provided the integral or sum converges absolutely $(E[|X|] < \infty)$.

- The mean can be thought of as the *average* value of X in a large number of independent repetitions of the experiment.
- E[X] is the "center of gravity" of the pdf, considering $f_X(x)$ as the distribution of mass on the real line.

Questions: Find the mean of the following random variables: Binomial, Poison, uniform, exponential, Gaussian, Cauchy. ES150 – Harvard SEAS

13

Variance and moments

• Expectation of a function of X

$$E[g(X)] = \begin{cases} \int_{-\infty}^{\infty} g(x) f_X(x) & \text{for continuous } X \, dx \\ \sum_k g(x_k) p_X(x_k) & \text{for discrete } X \end{cases}$$

• The variance of a random variable X is defined as

$$\operatorname{var}(X) = E\left[(X - E[X])^2\right]$$

- The variance provides a measure of the dispersion of X around its mean.
- The variance is always non-negative.
- The standard deviation $\sigma_X = \sqrt{\operatorname{var}(X)}$ has the same unit as X.
- The k^{th} moment of X is defined as

$$m_k = E\left[X^k\right]$$

The mean and variance can be expressed in terms of the first two moments E[X] and $E[X^2]$: $\operatorname{var}(X) = E[X^2] - (E[X])^2$.

ES150 – Harvard SEAS

Properties of mean and variance

• Expectation is linear

$$E\left[\sum_{k=1}^{n} g_k(X)\right] = \sum_{k=1}^{n} E\left[g_k(X)\right]$$

• Let c be a constant scalar. Then

$$E[c] = c \qquad \operatorname{var}(c) = 0$$

$$E[X+c] = E[X] + c \qquad \operatorname{var}(X+c) = \operatorname{var}(X)$$

$$E[cX] = cE[X] \qquad \operatorname{var}(cX) = c^{2}\operatorname{var}(X)$$

• Example: A random binary NRZ signal $x = \{1, 1, -1, -1, 1, -1, 1, ...\}$

$$x = \begin{cases} 1 & \text{with prob. } \frac{1}{2} \\ -1 & \text{with prob. } \frac{1}{2} \end{cases}$$

- Mean E[X] = 0: the signal is unbiased.
- Variance $\sigma_X^2 = 1$ is the average signal power.

What happens to the mean and variance if you scale the signal to a different voltage V? ${\rm ES150-Harvard\ SEAS}$

15

Markov and Chebyshev inequalities

For a Gaussian r.v., the mean and variance completely specify its pdf

$$X \sim \mathcal{N}(\mu, \sigma^2) \quad \Rightarrow \quad f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

In general, however, the mean and variance are insufficient in specifying a random variable (determining its pmf/pdf/cdf).

They can be used to bound the probabilities of the form $P[X \ge t]$.

• Markov inequality: For X nonnegative

$$P[X \ge a] \le \frac{E[X]}{a} , \quad a > 0$$

This bound is useful when the right-hand-side expression is < 1. It can be tight for certain distributions.

• Chebyshev inequality: For X with mean m and variance σ^2

$$P[|X - m| \ge a] \le \frac{\sigma^2}{a^2}$$

The Chebyshev inequality can be obtained by applying the Markov inequality to $Y = (X - m)^2$. ES150 – Harvard SEAS

Testing the fit of a distribution to data

We have a set of observation data. How do we determine how well a model distribution fits the data?

The Chi-square test.

- Partition the sample space S_X into the union of K disjoint intervals.
- Based on the modeled distribution, calculate the expected number of outcomes that fall in the kth interval as m_k .
- Let N_k be the observed number of outcomes in the interval k.
- Form the weighted difference

$$D^{2} = \sum_{k=1}^{K} \frac{(N_{k} - m_{k})^{2}}{m_{k}}$$

If D^2 is small then the fit is good. If $D^2 > t_{\alpha}$ then reject. Here t_{α} is a predetermined threshold based on the significant level of the test. It is calculated from $P[X \ge t_{\alpha}] = \alpha$, e.g. for $\alpha = 1\%$.

ES150 – Harvard SEAS