
Topic 2: Scalar random variables

• Discrete and continuous random variables

• Probability distribution and densities (cdf, pmf, pdf)

• Important random variables

• Expectation, mean, variance, moments

• Markov and Chebyshev inequalities

• Testing the fit of a distribution to data
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Definition of random variables

• A random variable is a function that assigns a real number, X(s), to

each outcome s in a sample space Ω.

– Ω is the domain of the random variable

– The set RX of all values of X is its range ⇒ RX ⊂ R.

• The notation {X ≤ x} denotes a subset of Ω consisting of all outcomes

s such that X(s) ≤ x. Similarly for ≥, = and ∈.

• The function as a random variable must satisfy two conditions:

– The set {X ≤ x} is an event for every x.

– The probability of the events {X = ∞} and {X = −∞} is zero:

P{X = ∞} = P{X = −∞} = 0
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Random variables

A random variable can be either discrete, continuous, or of mixed type.

X(s) : Ω → RX

• Discrete variable: The range RX is discrete, it can be either finite or

countably infinite

RX = {x1, x2, . . .}
The sample space Ω can be discrete, continuous, or a mixture of both.

X(s) partitions Ω into the sets {Si|X(s) = xi ∀s ∈ Si}.

• Continuous variable: The range is continuous. The sample space must

also be continuous.

• Mixed type: The range is a combination of discrete values and

continuous regions.
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Distribution function

The distribution function of a random variable relates to the probability of

an event described by the random variable. It is defined as

FX(x) = P{X ≤ x}

Properties of FX(x):

• 0 ≤ FX(x) ≤ 1

• F (∞) = 1 and F (−∞) = 0

• It is a non-decreasing function of x

x1 < x2 → FX(x1) ≤ FX(x2)

• It is continuous from the right

FX(x+) = lim
ε→0

FX(x + ε) = FX(x)

• P{X > x} = 1 − FX(x)

• P{X = x} = FX(x) − FX(x−)

• P{x1 < X ≤ x2} = FX(x2) − FX(x1)
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The distribution of different types of random variables

• Discrete: FX(x) is a stair-case function of x with jumps at a countable

set of points {x0, x1, . . .}

FX(x) =
∑

k

pX(xk)u(x − xk)

where pX(xk) is the probability of {X = xk}.

• Continuous: FX(x) is continuous everywhere and can be written as an

integral of a non-negative function

FX(x) =

∫ x

−∞

fX(t)dt.

The continuity implies that at any point x,

P{X = x} = FX(x+) − FX(x) = 0.

• Mixed: FX(x) has jumps on a countable set of points but is also

continuous on at least one interval.

We will mostly study discrete and continuous random variables.
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Discrete random variables – Pmf

A discrete random variable can be completely specified by its probability

mass function pX(x)

pX(x) = P{X = x} for x ∈ RX

• pX(x) ≥ 0 for any x ∈ RX

• ∑k pX(xk) = 1 for all xk ∈ RX

• For any set A

P (X ∈ A) =
∑

k

pX(xk) for all xk ∈ A ∩ RX

We use X ∼ pX(x) or just simply X ∼ p(x) to denote discrete random

variable X with pmf pX(x) or p(x).
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Some important discrete random variables

• Bernoulli: The success or failure of an experiment (Bernoulli trial).

pX(x) =







p if x = 1

1 − p if x = 0

– Example: Flipping a bias coin.

• Binomial: The number of successes in a sequence of n independent

Bernoulli trials.

pX(k) =

(

n

k

)

pk(1 − p)N−k for k = 0, . . . , n

– Example: The number of heads in n independent coin flips.

• Geometric: The number of trials until the first success.

pX(k) = (1 − p)k−1p for k = 1, 2, . . .

The geometric probability is strictly decreasing with k.

– Example: The number of coin flips until the first head shows up.
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• Poisson: Number of occurrences of an event within a certain time

period or region in space.

pX(k) =
αk

k!
e−α for k = 1, 2, . . .

where α ∈ R+ is the average number of occurrences.

– The Poisson probabilities can approximate the binomial probabilities.

If n is large and p is small, then for α = np

pX(k) =

(

n

k

)

pk(1 − p)N−k ≈ αk

k!
e−α

The approximation becomes exact in the limit of n → ∞, provided

α = np is fixed.
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Continuous random variables – Pdf

A continuous random variable can be completely specified by its probability

density function, which is a nonnegative function such that

FX(x) =

∫ x

−∞

fX(t) dt.

Properties of fX(x):

• fX(x) = dFX(x)
dx

• fX(x) ≥ 0 for all x ∈ R

•
∫

∞

−∞
fX(x)dx = 1

• P{X ∈ A} =
∫

A
fX(x)dx for any event A ∈ R

• P{x1 < X ≤ x2} =
∫ x2

x1

fX(x)dx

However, fX(x) should not be interpreted as the probability at X = x. In

fact, fX(x) is not a probability measure since it can be > 1.
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Some important continuous random variables

• Uniform U[a, b]:

fX(x) =















0 for x < a

1
b−a for a ≤ x ≤ b

0 for x > b

– Example: A wireless signal x(t) = A cos(ωt + θ) has the phase

θ ∼ U [−π, π] because of random scattering.

• Exponential: X ∼ exp(λ)

fX(x) = λe−λx , λ > 0 , x ≥ 0

– Examples: The arrival time of packets at an internet router,

cell-phone call durations can be modeled as exponential RVs.

• Gaussian (normal): X ∼ N (µ, σ2)

fX(x) =
1

σ
√

2π
exp

(

− (x − µ)2

2σ2

)

, σ > 0 , −∞ < x < ∞

– When µ = 0 and σ = 1, we call f(x) the standard Gaussian density.
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– The Gaussian distribution is very important and is often used in

EE, for example, to model thermal noise in circuits, in

communication and control systems.

– It also arises naturally from the sum of independent random

variables. We will study more about this in a later lecture.

– The Q function

Q(α) = Pr[x ≥ α] =
1√
2π

∫ +∞

α

e−x2/2dx

∗ Often used to calculate the error probability in communications.

∗ Has no closed-form but good approximations exist.

∗ A related function is the complementary error function

erfc(z) =
2√
π

∫ +∞

z

e−x2

dx = 2Q
(√

2z
)

Matlab has the command erfc(z).

• Chi-square: X ∼ X 2
k

fX(x) =
xk/2−1e−x/2

Γ(k/2)2k/2
, x ≥ 0, where Γ(p) :=

∫

∞

0

zp−1e−zdz
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– Here k is called the degree of freedom. When k is an integer,

Γ(k) = (k − 1)! = (k − 1)(k − 2) . . . 2 · 1
– The chi-squared random variable X arises from the sum of k i.i.d.

standard Gaussian RVs

X =

k
∑

i=1

Zi , Zi ∼ N (0, 1) , independent

– A X 2
2 random variable (k = 2) is the same as exp( 1

2 ).

• Rayleigh:

fX(x) =
x

λ2
e−(x/2)2/2 , x ≥ 0

– Example: The magnitude of a wireless signal.

• Cauchy: X ∼ Cauchy(λ)

fX(x) =
λ/π

λ2 + x2
, −∞ < x < ∞

– The Cauchy random variable arises as the tangent of a uniform RV.

ES150 – Harvard SEAS 12



Expectation

The expected value (also called expectation or mean) of a random variable

X is defined

• for continuous X as:

E[X] =

∫

∞

−∞

xfX(x)dx

• for discrete X as:

E[X] =
∑

k

xkpX(xk)

provided the integral or sum converges absolutely (E[|X|] < ∞).

• The mean can be thought of as the average value of X in a large

number of independent repetitions of the experiment.

• E[X] is the “center of gravity” of the pdf, considering fX(x) as the

distribution of mass on the real line.

Questions: Find the mean of the following random variables: Binomial,

Poison, uniform, exponential, Gaussian, Cauchy.
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Variance and moments

• Expectation of a function of X

E[g(X)] =







∫

∞

−∞
g(x)fX(x) for continuous X dx

∑

k g(xk)pX(xk) for discrete X

• The variance of a random variable X is defined as

var(X) = E
[

(X − E[X])2
]

– The variance provides a measure of the dispersion of X around its

mean.

– The variance is always non-negative.

– The standard deviation σX =
√

var(X) has the same unit as X.

• The kth moment of X is defined as

mk = E
[

Xk
]

The mean and variance can be expressed in terms of the first two

moments E[X] and E[X2]: var(X) = E[X2] − (E[X])
2
.
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Properties of mean and variance

• Expectation is linear

E

[

n
∑

k=1

gk(X)

]

=
n
∑

k=1

E [gk(X)]

• Let c be a constant scalar. Then

E[c] = c

E[X + c] = E[X] + c

E[cX] = cE[X]

var(c) = 0

var(X + c) = var(X)

var(cX) = c2var(X)

• Example: A random binary NRZ signal x = {1, 1,−1,−1, 1,−1, 1, . . .}

x =







1 with prob. 1
2

−1 with prob. 1
2

– Mean E[X] = 0: the signal is unbiased.

– Variance σ2
X = 1 is the average signal power.

What happens to the mean and variance if you scale the signal to a

different voltage V ?
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Markov and Chebyshev inequalities

For a Gaussian r.v., the mean and variance completely specify its pdf

X ∼ N (µ, σ2) ⇒ fX(x) =
1

σ
√

2π
exp

(

− (x − µ)2

2σ2

)

In general, however, the mean and variance are insufficient in specifying a

random variable (determining its pmf/pdf/cdf).

They can be used to bound the probabilities of the form P [X ≥ t].

• Markov inequality: For X nonnegative

P [X ≥ a] ≤ E[X]

a
, a > 0

This bound is useful when the right-hand-side expression is < 1. It can

be tight for certain distributions.

• Chebyshev inequality: For X with mean m and variance σ2

P [|X − m| ≥ a] ≤ σ2

a2

The Chebyshev inequality can be obtained by applying the Markov

inequality to Y = (X − m)2.
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Testing the fit of a distribution to data

We have a set of observation data. How do we determine how well a model

distribution fits the data?

The Chi-square test.

• Partition the sample space SX into the union of K disjoint intervals.

• Based on the modeled distribution, calculate the expected number of

outcomes that fall in the kth interval as mk.

• Let Nk be the observed number of outcomes in the interval k.

• Form the weighted difference

D2 =

K
∑

k=1

(Nk − mk)2

mk

If D2 is small then the fit is good. If D2 > tα then reject.

Here tα is a predetermined threshold based on the significant level of

the test. It is calculated from P [X ≥ tα] = α, e.g. for α = 1%.
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