
Topic 4: Multivariate random variables

• Joint, marginal, and conditional pmf

• Joint, marginal, and conditional pdf and cdf

• Independence

• Expectation, covariance, correlation

• Conditional expectation

• Two jointly Gaussian random variables
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Multiple random variables

• In many problems, we are interested in more than one random

variables representing different quantities of interest from the same

experiment and the same sample space.

– Examples: The traffic loads at different routers in a network, the

received quality at different HDTVs, the shuttle arrival time at

different stations.

• These random variables can be represented by a random vector X that

assign a vector of real number to each outcome s in the sample space Ω.

X = (X1, X2, . . . , Xn)

• It prompts us to investigate the mutual coupling among these random

variables.

– We will study 2 random variables first, before generalizing to a

vector of n elements.
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Joint cdf

• The joint cdf of two random variables X and Y specifies the

probability of the event {X ≤ x} ∩ {Y ≤ y}

FX,Y (x, y) = P [X ≤ x, Y ≤ y]

The joint cdf is defined for all pairs of random variables.

• Properties of the joint cdf:

– Non-negativity:

FX,Y (x, y) ≥ 0

– Non-decreasing:

If x1 ≤ x2 and y1 ≤ y2,

then FX,Y (x1, y1) ≤ FX,Y (x2, y2)

– Boundedness:

lim
x,y→∞

FX,Y (x, y) = 1

lim
x→−∞

FX,Y (x, y) = lim
y→−∞

FX,Y (x, y) = 0
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– Marginal cdf’s: which are the individual cdf’s

FX(x) = lim
y→∞

FX,Y (x, y)

The marginal cdf’s can be obtained from the joint cdf, but usually

not the reverse. In general, knowledge of all marginal cdf’s is

insufficient to specify the joint cdf.

– Rectangle formula:

P [a < X ≤ b, c < Y ≤ d]

= FX,Y (b, d) − FX,Y (b, c) − FX,Y (a, d) + FX,Y (a, c)
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Discrete random variables – Joint pmf

• Consider two discrete random variables X and Y .

• They are completely specified by their joint pmf, which specifies the

probability of the event {X = x, Y = y}

pX,Y (xk, yj) = P (X = xk, Y = yj)

• The probability of any event A is given as

P ((X, Y ) ∈ A) =
∑

(xk,yj)∈A

pX,Y (xk, yj)

• By the axioms of probability

pX,Y (xk, yj) ≥ 0

∞
∑

k=1

∞
∑

j=1

pX,Y (xk, yj) = 1
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Marginal and conditional pmf’s

• From the joint pmf PX,Y (x, y), we can calculate the individual pmf

pX(x) and pY (y), which are now referred to as the marginal pmf

pX(xi) =

∞
∑

j=1

pX,Y (xi, yj)

Similarly pY (yk) =
∑∞

i=1 pX,Y (xi, yk).

– The marginal pmf is an one-dimensional pmf.

– In general, knowledge of all marginal pmf’s is insufficient to specify

the joint pmf.

• Sometimes we know one of the two random variables, and we are

interested in the probability of the other one. This is captured in the

conditional pmf

pX|Y (X = xi|Y = yk) =
pX,Y (xi, yk)

pY (yk)

provided pY (yk) 6= 0. Otherwise define pX|Y (x|yk) = 0.
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Example: The binary symmetric channel

Consider the following binary communication channel

X ∈ {0, 1}

Z ∈ {0, 1}

Y ∈ {0, 1}

The bit sent is X ∼ Bern(p), 0 ≤ p ≤ 1

The noise is Z ∼ Bern(ε), 0 ≤ ε ≤ 0.5

The bit received is Y = (X + Z) mod 2 = X ⊕ Z

where X and Z are independent.

Find the following probabilities:

1. pY (y);

2. pX|Y (x|y);

3. P [X 6= Y ], the probability of error.
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Jointly continuous random variables –

Joint, marginal, and condition pdf

• Two random variables X and Y are jointly continuous if the

probability of any event involving (X, Y ) can be expressed as an

integral of a probability density function

P [(X, Y ) ∈ A] =

∫ ∫

A

fX,Y (x, y) dx dy

– fX,Y (x, y) is called the joint probability density function

– It is possible to have two continuous random variables that are not

jointly continuous.

• For jointly continuous random variables

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞

fX,Y (u, v) dv du

fX,Y (u, v) =
∂2FX,Y (x, y)

∂x∂y

• Since FX,Y (x, y) is non-decreasing, the joint density is always
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non-negative

fX,Y (x, y) ≥ 0

But fX,Y (x, y) is NOT a probability measure (it can be > 1).

• By the axioms of probability,
∫ ∞

−∞

∫ ∞

−∞

fX,Y (x, y) dx dy = 1

• The marginal pdf can be obtained from the joint pdf as

fX(x) =

∫ ∞

−∞

fX,Y (x, y)dy

• The conditional pdf is given as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

• Example: Consider two jointly Gaussian random variables with the

joint pdf

fX,Y (x, y) =
1

2π
√

1 − ρ2
exp

{

−x2 − 2ρxy + y2

2(1 − ρ2)

}
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– The marginal pdf of X is Gaussian

fX(x) =
1√
2π

e−x2/2

– The conditional pdf of X given Y is also Gaussian

fX(x|y) =
1

√

2π(1 − ρ2)
exp

{

− (x − ρy)2

2(1 − ρ2)

}
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Independence

• Independence between 2 random variables X and Y means

P (X ∈ B, Y ∈ C) = P (X ∈ B) P (Y ∈ C)

• Two random variables X and Y are independent if and only if

FX,Y (x, y) = FX(x)FY (y)

• Equivalently, in terms of the joint and conditional densities

– For discrete r.v.’s:

pX,Y (xi, yk) = pX(xi)pY (yk)

pX|Y (xi|yk) = pX(xi)

– For jointly continuous r.v.’s:

fX,Y (x, y) = fX(x)fY (y)

fX|Y (x|y) = fX(x)
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• X and Y independent implies

E[XY ] = E[X]E[Y ]

The reverse is not always true. That is, E[XY ] = E[X]E[Y ] does not

necessarily imply X and Y are independent.

• Example: Consider discrete RVs X and Y such that

P [X = ±1] = P [X = ±2] =
1

4
and Y = X2

Then E[X] = 0 and E[XY ] = 0, but X and Y are not independent.

Find pY (1), pY (4), pXY (1, 4).
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Expectation, covariance, correlation

• Let g(x, y) be a function of two random variables X and Y . The

expectation of g(X, Y ) is given by

E[g(X, Y )] =















∑

k

∑

i

g(xi, yk)pX,Y (xi, yk) discrete X, Y

∫ ∞

−∞

∫ ∞

−∞

g(x, y)fX,Y (x, y) dx dy jointly continuous X, Y

• The covariance between 2 random variables is defined as

cov(X, Y ) = E
[

X − E[X]
][

Y − E[Y ]
]

= E[XY ] − E[X]E[Y ]

– If E[X] = 0 or E[Y ] = 0 then cov(X, Y ) = E[XY ].

– Covariance is analogous to the variance of a single random variable:

cov(X, X) = var(X).

• E[XY ] is the correlation between the two random variables.

– By the Cauchy-Schwatz inequality

|E[XY ]| ≤
√

E[X2]E[Y 2]
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• X and Y are said to be (note the difference in terminology here)

– orthogonal if E[XY ] = 0

– uncorrelated if cov(X, Y ) = 0

• The correlation coefficient is defined as

ρX,Y =
cov(X, Y )

σXσY

where σX =
√

var(X) and σY =
√

var(Y ) are the standard deviations.

Properties:

– Bounded: −1 ≤ ρX,Y ≤ 1

– If ρX,Y = 0, X and Y are uncorrelated

– If X and Y are independent, then ρX,Y = 0.

Independence implies uncorrelation, but not the reverse.

• For Gaussian random variables X and Y , however, if they are

uncorrelated, then they are also independent.
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Conditional expectation

• The conditional expectation of X given Y is defined as

– For discrete r.v.’s:

E
[

X|Y = yk

]

=
∑

i

xi pX|Y (xi|yk)

– For jointly continuous r.v.’s:

E
[

X|Y = y
]

=

∫ ∞

−∞

x fX|Y (x|y)dx

• Similarly for the conditional expectation of a function of X, given Y

E [g(X)|Y = y] =















∑

i

g(xi)pX|Y (xi|y) for discrete X, Y

∫ ∞

−∞

g(x) fX|Y (x|y)dx for jointly continuous X, Y

• The law of conditional expectation

E[g(X)] = EY

[

E[g(X)|Y ]
]
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For discrete r.v.’s

E[g(X)] =
∑

k

E
[

g(X)|yk

]

pY (yk)

For continuous r.v.’s

E[g(X)] =

∫ ∞

−∞

E
[

g(X)|y
]

fY (y)dy

This law is very useful in calculating the expectation.

• Example: Defects in a chip.

– The total number of defects on a chip is X ∼ Poisson(α).

– The probability of finding an defect in the memory is p.

Find the expected number of defects in the memory.
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Two jointly Gaussian random variables

The joint pdf of two jointly Gaussian r.v.’s X and Y is

fX,Y (x, y) =
exp

{

− 1
2(1−ρ2

XY
)

[

(x−µX)2

σ2

X

− 2ρXY
(x−µX)(y−µY )

σXσY
+ (y−µY )2

σ2

Y

]}

2πσXσY

√

1 − ρ2
XY

• The pdf is a function only of µX , µY , σX , σY , and ρXY .

• If X and Y are jointly Gaussian then they are individually Gaussian;

that is X ∼ N (µX , σ2
X) and Y ∼ N (µY , σ2

Y ).

• If X and Y are independent Gaussian random variables, then they are

also jointly Gaussian with the above joint pdf (ρXY = 0).

• In general, however, Gaussian random variables are not necessarily

jointly Gaussian.

– Example: Let X1 ∼ N (0, 1) and X2 =







+1 with probability 1
2

−1 with probability 1
2

be independent r.v.’s. Let X3 = X1X2 then X3 ∼ N (0, 1), but X1

and X3 are not jointly Gaussian.
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