Topic 4: Multivariate random variables

Joint, marginal, and conditional pmf

Joint, marginal, and conditional pdf and cdf

Independence

Expectation, covariance, correlation

Conditional expectation

Two jointly Gaussian random variables
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Multiple random variables

e In many problems, we are interested in more than one random
variables representing different quantities of interest from the same
experiment and the same sample space.

— Examples: The traffic loads at different routers in a network, the
received quality at different HDTVs, the shuttle arrival time at
different stations.

e These random variables can be represented by a random vector X that
assign a vector of real number to each outcome s in the sample space ().

X = (X1, Xo,..., Xp)

e It prompts us to investigate the mutual coupling among these random
variables.

— We will study 2 random variables first, before generalizing to a

vector of n elements.
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Joint cdf

e The joint cdf of two random variables X and Y specifies the
probability of the event {X <z} N{Y <y}

Fxy(z,y) = PX <z,Y <y
The joint cdf is defined for all pairs of random variables.

e Properties of the joint cdf:
— Non-negativity:
Fxy(z,y) >0
— Non-decreasing:

If r1 < xo and y1 < yo,
then Fxy(z1,y1) < Fxy(z2,92)

— Boundedness:
lim Fyy(z,y) = 1
T,y — 00
lim FX’y(QS‘,y) = lim FX’y(ﬂﬁ,’y) =0
Tr— —00 Y— —00
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— Marginal cdf’s: which are the individual cdf’s

Fx(z) = lim Fxy(z,y)

Yy—oo

The marginal cdf’s can be obtained from the joint cdf, but usually
not the reverse. In general, knowledge of all marginal cdf’s is
insufficient to specify the joint cdf.

— Rectangle formula:

Pla< X <bc<Y <d]
= FX7y(b, d) — FX7y(b, C) — FX7y(a, d) + FX7y(CL, C)
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Discrete random variables — Joint pmf

Consider two discrete random variables X and Y.

They are completely specified by their joint pmf, which specifies the
probability of the event {X = z,Y =y}

pX,Y(xkzayj) =P(X =x2p,Y = yj)

The probability of any event A is given as

P(X,Y)eAd) = > pxy(ey;)
(zr,y;)€EA

By the axioms of probability

px.y(Tk,y;) >0

S pxy(@ey) =1

k=1 j=1
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Marginal and conditional pmf’s

e From the joint pmf Px y (z,y), we can calculate the individual pmf
px (x) and py (y), which are now referred to as the marginal pmf

oo
px(x:) =Y pxy(@i,y;)
j=1

Similarly py (yx) = Zfil Px.y (Ti, Yr)-
— The marginal pmf is an one-dimensional pmf.
— In general, knowledge of all marginal pmf’s is insufficient to specify

the joint pmf.

e Sometimes we know one of the two random variables, and we are
interested in the probability of the other one. This is captured in the

conditional pmf

Px,y\Ti, Yk
px)y (X =Y = yp) = px.v (i Yr)
py (Yk)

provided py (yx) # 0. Otherwise define pxy (z|yx) = 0.

ES150 — Harvard SEAS



Example: The binary symmetric channel

Consider the following binary communication channel

Z € {0,1}
X €{0,1} :l Y €{0,1}
The bit sent is X ~Bern(p), 0<p<1
The noise is Z ~ Bern(e), 0<e<0.5

The bit receivedis Y =(X+Z2Z) mod2=X&Z
where X and Z are independent.
Find the following probabilities:
L py(y);
2. pxy (zy);

3. P[X # Y], the probability of error.
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Jointly continuous random variables —
Joint, marginal, and condition pdf

e Two random variables X and Y are jointly continuous if the
probability of any event involving (X,Y’) can be expressed as an
integral of a probability density function

PI(X,Y) € 4] = / /A Fxw (@, y) de dy

— fxy(x,y) is called the joint probability density function

— It is possible to have two continuous random variables that are not
jointly continuous.

e For jointly continuous random variables

oy
Fxy (z,y) = / / fX7y(U, v) dv du

a2F1X,Y(x7 y)
0x0y

fxy(u,v) =

e Since Fx y(z,y) is non-decreasing, the joint density is always
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non-negative
fxy(z,y) >0
But fx y(x,y)is NOT a probability measure (it can be > 1).

e By the axioms of probability,

/ / fxy(z,y)dedy =1

e The marginal pdf can be obtained from the joint pdf as
fx(x) = / fx v (z,y)dy

e The conditional pdf is given as

_ fxy(z,y)

e Example: Consider two jointly Gaussian random variables with the
joint pdf

Fev(e) 1 { z2 —2pzcy+y2}
XY T,Y) = —F——=€eXpP§ —
2w/ 1 — p? 2(1 - p?)
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— The marginal pdf of X is Gaussian

() = =2

— The conditional pdf of X given Y is also Gaussian

_ L O €y )
[x(zly) = D) p{ 2(1_p2)}
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Independence

e Independence between 2 random variables X and Y means
PXeB,Ye(C)=PXeB)PYeC)
e Two random variables X and Y are independent if and only if
Fxy(z,y) = Fx(x)Fy (y)

e Equivalently, in terms of the joint and conditional densities

— For discrete r.v.’s:

pxy (@i, ye) = px(wi)py (Yr)
x|y (xilyx) = px(xi)

— For jointly continuous r.v.’s:

fxy(@y) = fx@)fr(y)
fxiy(zly) = fx()
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e X and Y independent implies
E[XY] = E[X]|E]Y]

The reverse is not always true. That is, E[XY] = E[X]E[Y] does not
necessarily imply X and Y are independent.

e Example: Consider discrete RVs X and Y such that
1
P[X:jﬂ]zp[xzﬁ]:Z and Y = X?

Then F[X] =0 and E[XY] =0, but X and Y are not independent.
Find py (1), py (4), pxv (1, 4).
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Expectation, covariance, correlation

e Let g(x,y) be a function of two random variables X and Y. The
expectation of g(X,Y’) is given by

Z Zg i, Yk )PX,Y (Tis Yr) discrete X, Y
Elg(X,Y)]
/ / (z,y)fxy(z,y) drdy jointly continuous X,Y

e The covariance between 2 random variables is defined as
cov(X,Y) = E[X - E[X]][Y - E[Y]]
= FE[XY]|- E[X]E[Y]
— If E[X]=0or E[Y] =0 then cov(X,Y) = EF[XY].

— Covariance is analogous to the variance of a single random variable:
cov(X, X) = var(X).

e E[XY] is the correlation between the two random variables.

— By the Cauchy-Schwatz inequality

[EIXY]| < v EX?|E[Y?]
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e X and Y are said to be (note the difference in terminology here)
— orthogonal if F[XY]=0
— uncorrelated  if cov(X,Y) =0

e The correlation coefficient is defined as

cov(X,Y)
PXY =
OxXO0Oy
where ox = /var(X) and oy = y/var(Y) are the standard deviations.

Properties:

— Bounded: —1 <pxy <1

— If px,y =0, X and Y are uncorrelated

— If X and Y are independent, then px y = 0.

Independence implies uncorrelation, but not the reverse.

e For Gaussian random variables X and Y, however, if they are

uncorrelated, then they are also independent.
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Conditional expectation

e The conditional expectation of X given Y is defined as
— For discrete r.v.’s:

E[X!Y = yk} = Zl’z pX|Y($i|yk)

2

— For jointly continuous r.v.’s:

o0

E[X|Y =y] :/  [xpy (xly)de

— o0

e Similarly for the conditional expectation of a function of X, given Y

Zg(%)px|y(xi|y) for discrete X,Y
EgX)Y =yl=49 7/

—00
e The law of conditional expectation

Elg(X)] = By [E[g(X)|Y]]
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For discrete r.v.’s
Elg(X)] = ZE[Q(X)’yk}pY(yk)
k

For continuous r.v.’s

(&)

Elg(X)] =/ Elg(X)ly] fy (y)dy

—o0
This law is very useful in calculating the expectation.

e Example: Defects in a chip.
— The total number of defects on a chip is X ~ Poisson(a).
— The probability of finding an defect in the memory is p.

Find the expected number of defects in the memory.
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/ 9(z) fxv(z|y)dz for jointly continuous X,Y
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Two jointly Gaussian random variables
The joint pdf of two jointly Gaussian r.v.’s X and Y is

exp{ 1 [(Qf—lgx)Q _ 2PXY (z—px)(y—py) + (y_l;Y)Q]}

_2(1_/7%(3/) 0% oxXOy oy

fxy(z,y) =
%y (@) 2roxoy /1 — piy

e The pdf is a function only of ux, py, ox, oy, and pxy.

e If X and Y are jointly Gaussian then they are individually Gaussian;
that is X ~ N(ux,0%) and Y ~ N (uy,02).

e If X and Y are independent Gaussian random variables, then they are
also jointly Gaussian with the above joint pdf (pxy = 0).

e In general, however, Gaussian random variables are not necessarily
jointly Gaussian.

+1 with probability

—1 with probability

be independent r.v.’s. Let X3 = X7 X5 then X35 ~ N(0,1), but X;

and X3 are not jointly Gaussian.

— Example: Let X1 ~ N (0,1) and X5 =

N N
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