
Topic 5: Functions of multivariate random variables

• Functions of several random variables

• Random vectors

– Mean and covariance matrix

– Cross-covariance, cross-correlation

• Jointly Gaussian random variables
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Joint distribution and densities

• Consider n random variables {X1, . . . , Xn}.

• The joint distribution is defined as

FX1,...,Xn
(x1, . . . , xn) = P [X1 ≤ x1, . . . , Xn ≤ xn]

– Discrete r.v.’s: The joint pmf is defined as

pX1,...,Xn
(x1, . . . , xn) = P [X1 = x1, . . . , Xn = xn]

– Jointly continuous r.v.’s: The joint pdf can be obtained from the

joint cdf as

fX1,...,Xn
(x) =

∂n

∂x1 . . . ∂xn
FX1,...,Xn

(x1, . . . , xn)

• The marginal density is obtained by integrating (summing) the joint

pdf (pmf) over all other random variables

fX1
(x1) =

∫

· · ·
∫

fX1,...,Xn
(x1, x2, . . . , xn)dx2 . . . dxn
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One function of several random variables

• Let Y be a function of several random variables

Y = g(X1, X2, . . . , Xn)

To find the cdf of Y , first find the event

{Y ≤ y} ≡ {Rx | x ∈ Rx , g(x) ≤ y}

then establish

FY (y) = P [X ∈ Rx] =

∫

· · ·
∫

x∈Rx

fX(x1, . . . , xn)dx1 . . . dxn
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Sum of 2 random variables

• Let X and Y be two random variables and define

Z = X + Y.

Since P [Z ≤ z] = P [X + Y ≤ z], the cdf of Z can be expressed as

FZ(z) =

∫

∞

−∞

∫ z−y

−∞

fX,Y (x, y)dxdy

Thus the pdf of Z is

fZ(z) =
dFZ(z)

dz
=

∫

∞

−∞

fX,Y (x, z − x)dx

• If X and Y are independent then the pdf of Z is the convolution of the

two pdf’s

fZ(z) =

∫

∞

−∞

fX(x)fY (z − x)dx

• Example: Sum of two (correlated) Gaussian random variables is a

Gaussian r.v.
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Linear transformation of random vectors

• Let the random vector Y be a linear transformation of X

Y = AX

Assume that A is invertible, then X = A−1Y, and the pdf of Y is

fY (y) = fX

(

A−1y
)

/ det(A)

• Example: Linear transformation of 2 jointly Gaussian RVs X and Y




V

W



 =
1√
2





1 1

−1 1









X

Y





where

fX,Y (x, y) =
1

2π
√

1 − ρ2
exp

{

−x2 − 2ρxy + y2

2(1 − ρ2)

}

.

Show that V and W are independent, zero-mean Gaussian RVs with

variance 1 + ρ and 1 − ρ.
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Transformation of multiple random variables

• Consider multiple functions of multiple jointly continuous random

variables Xi as

Yk = gk(X1, X2, . . . , Xn) , k = 1, . . . , n

Assume that the inverse functions exist such that

Xi = hi(Y1, Y2, . . . , Yn) , i = 1, . . . , n

or in the vector form, X = H(Y ). Consider the case that these

functions are continuous and has continuous partial derivatives. Let

dH =











∂h1

∂y1

. . . ∂h1

∂yn

...
...

∂hn

∂y1

. . . ∂hn

∂yn











then the joint pdf of Yk is obtained as

fY (y) = | det(dH)| fX (H(y))

where det(dH) is the Jacobian of H.
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• Example: Transformation from the Catersian to polar coordinate.

Let X, Y ∼ N (0, 1) be independent. Find the joint pdf of V and W as

V = (X2 + Y 2)1/2

W = ∠(X, Y ) , W ∈ [0, 2π]

Inverse transformation: x = v cos w and y = v sinw. The Jacobian is

J =

∣

∣

∣

∣

∣

∣

cos w −v sin w

sinw v cos w

∣

∣

∣

∣

∣

∣

= v.

Since fXY (x, y) = 1

2π exp{−(x2 + y2)/2}, we have

fV,W (v, w) =
1

2π
ve−v2/2 , v ≥ 0, 0 ≤ w < 2π.

From this, we can calculate the pdf of V as a Rayleigh density

fV (v) = ve−v2/2 , v ≥ 0.

The angle W is uniform: fW (w) = 1

2π , w ∈ [0, 2π].

⇒ The radius V and the angle W are independent!
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Random vectors, mean and covariance matrices

• Consider a random column vector X = [X1, . . . , Xn]T , Xi are RVs.

• The vector mean is mX = E[X] with elements X̄i = E[Xi], i = 1, . . . , n

• The covariance matrix of a vector X is defined as

ΣX = E
[

(X − mX)(X − mX)T
]

which has the element at the position (i, j) as

ΣX(i, j) = E
[

(Xi − mXi
)(Xj − mXj

)
]

• Properties of the covariance matrix

a) ΣX is symmetric

b) The diagonal values are ΣX(i, i) = var(Xi)

c) ΣX is non-negative semidefinite, that is

aT Σxa ≥ 0 for any real vector a

Equivalently, the eigenvalues of ΣX are non-negative.

• The correlation matrix is defined as RX = E[XXT ]. Note that

ΣX = RX − mXmT
X .
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Cross-covariance and cross-correlation matrices

• The cross-covariance matrix between two random vectors X and Y is

ΣXY = E
[

(X − mX)(Y − mY )T
]

a) ΣXY is not necessarily symmetric.

b) ΣXY = ΣT
Y X (the order of X and Y matters).

c) If X and Y are uncorrelated, then ΣXY = ΣY X = 0.

d) If we stack two vectors as Z =





X

Y



 then the covariance matrix of

Z is given by

ΣZ =





ΣX ΣXY

ΣY X ΣY





If X and Y are uncorrelated, then ΣZ is block-diagonal.

• The cross-correlation matrix between X and Y is

RXY = E
[

XYT
]

= ΣXY + mXmT
Y
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Jointly Gaussian random variables

• Consider a Gaussian vector X = [X1, . . . , Xn]T in which Xi are jointly

Gaussian with

– Mean mX = E[X]

– Covariance

ΣX = E
[

(X − mX)(X − mX)T
]

• The pdf of X is

fX(x) =
1

(2π)n/2 det(ΣX)1/2
exp

{

−1

2
(x − mX)T Σ−1

X (x − mX)

}

• Linear transformation of a Gaussian vector

Y = AX

is a Gaussian vector with mean and covariance as

mY = AmX

ΣY = AΣXAT
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