Topic 5: Functions of multivariate random variables

- Functions of several random variables
- Random vectors
- Mean and covariance matrix
- Cross-covariance, cross-correlation
- Jointly Gaussian random variables

Joint distribution and densities

- Consider n random variables $\left\{X_{1}, \ldots, X_{n}\right\}$.
- The joint distribution is defined as

$$
F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=P\left[X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right]
$$

- Discrete r.v.'s: The joint pmf is defined as

$$
p_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=P\left[X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right]
$$

- Jointly continuous r.v.'s: The joint pdf can be obtained from the joint cdf as

$$
f_{X_{1}, \ldots, X_{n}}(\mathrm{x})=\frac{\partial^{n}}{\partial x_{1} \ldots \partial x_{n}} F_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)
$$

- The marginal density is obtained by integrating (summing) the joint pdf (pmf) over all other random variables

$$
f_{X_{1}}\left(x_{1}\right)=\int \cdots \int f_{X_{1}, \ldots, X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) d x_{2} \ldots d x_{n}
$$

One function of several random variables

- Let Y be a function of several random variables

$$
Y=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

To find the cdf of Y, first find the event

$$
\{Y \leq y\} \equiv\left\{R_{x} \mid \mathbf{x} \in R_{x}, g(\mathbf{x}) \leq y\right\}
$$

then establish

$$
F_{Y}(y)=P\left[\mathbf{X} \in R_{x}\right]=\int \cdots \int_{\mathbf{x} \in R_{x}} f_{X}\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

Sum of 2 random variables

- Let X and Y be two random variables and define

$$
Z=X+Y
$$

Since $P[Z \leq z]=P[X+Y \leq z]$, the cdf of Z can be expressed as

$$
F_{Z}(z)=\int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_{X, Y}(x, y) d x d y
$$

Thus the pdf of Z is

$$
f_{Z}(z)=\frac{d F_{Z}(z)}{d z}=\int_{-\infty}^{\infty} f_{X, Y}(x, z-x) d x
$$

- If X and Y are independent then the pdf of Z is the convolution of the two pdf's

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) d x
$$

- Example: Sum of two (correlated) Gaussian random variables is a Gaussian r.v.

Linear transformation of random vectors

- Let the random vector \mathbf{Y} be a linear transformation of \mathbf{X}

$$
\mathbf{Y}=\mathbf{A X}
$$

Assume that \mathbf{A} is invertible, then $\mathbf{X}=\mathbf{A}^{-1} \mathbf{Y}$, and the pdf of \mathbf{Y} is

$$
f_{Y}(\mathbf{y})=f_{X}\left(\mathbf{A}^{-1} \mathbf{y}\right) / \operatorname{det}(\mathbf{A})
$$

- Example: Linear transformation of 2 jointly Gaussian RVs X and Y

$$
\left[\begin{array}{c}
V \\
W
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]
$$

where

$$
f_{X, Y}(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} \exp \left\{-\frac{x^{2}-2 \rho x y+y^{2}}{2\left(1-\rho^{2}\right)}\right\} .
$$

Show that V and W are independent, zero-mean Gaussian RVs with variance $1+\rho$ and $1-\rho$.

Transformation of multiple random variables

- Consider multiple functions of multiple jointly continuous random variables X_{i} as

$$
Y_{k}=g_{k}\left(X_{1}, X_{2}, \ldots, X_{n}\right), \quad k=1, \ldots, n
$$

Assume that the inverse functions exist such that

$$
X_{i}=h_{i}\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right), \quad i=1, \ldots, n
$$

or in the vector form, $X=H(Y)$. Consider the case that these functions are continuous and has continuous partial derivatives. Let

$$
d H=\left[\begin{array}{ccc}
\frac{\partial h_{1}}{\partial y_{1}} & \cdots & \frac{\partial h_{1}}{\partial y_{n}} \\
\vdots & & \vdots \\
\frac{\partial h_{n}}{\partial y_{1}} & \cdots & \frac{\partial h_{n}}{\partial y_{n}}
\end{array}\right]
$$

then the joint pdf of Y_{k} is obtained as

$$
f_{Y}(y)=|\operatorname{det}(d H)| f_{X}(H(y))
$$

where $\operatorname{det}(d H)$ is the Jacobian of H.

- Example: Transformation from the Catersian to polar coordinate.

Let $X, Y \sim \mathcal{N}(0,1)$ be independent. Find the joint pdf of V and W as

$$
\begin{aligned}
V & =\left(X^{2}+Y^{2}\right)^{1 / 2} \\
W & =\angle(X, Y), \quad W \in[0,2 \pi]
\end{aligned}
$$

Inverse transformation: $x=v \cos w$ and $y=v \sin w$. The Jacobian is

$$
\mathscr{J}=\left|\begin{array}{cc}
\cos w & -v \sin w \\
\sin w & v \cos w
\end{array}\right|=v
$$

Since $f_{X Y}(x, y)=\frac{1}{2 \pi} \exp \left\{-\left(x^{2}+y^{2}\right) / 2\right\}$, we have

$$
f_{V, W}(v, w)=\frac{1}{2 \pi} v e^{-v^{2} / 2}, \quad v \geq 0, \quad 0 \leq w<2 \pi .
$$

From this, we can calculate the pdf of V as a Rayleigh density

$$
f_{V}(v)=v e^{-v^{2} / 2}, \quad v \geq 0 .
$$

The angle W is uniform: $f_{W}(w)=\frac{1}{2 \pi}, w \in[0,2 \pi]$.
\Rightarrow The radius V and the angle W are independent!

Random vectors, mean and covariance matrices

- Consider a random column vector $\mathbf{X}=\left[X_{1}, \ldots, X_{n}\right]^{T}, X_{i}$ are RVs.
- The vector mean is $\mathbf{m}_{X}=E[\mathbf{X}]$ with elements $\bar{X}_{i}=E\left[X_{i}\right], i=1, \ldots, n$
- The covariance matrix of a vector \mathbf{X} is defined as

$$
\Sigma_{X}=E\left[\left(\mathbf{X}-\mathbf{m}_{X}\right)\left(\mathbf{X}-\mathbf{m}_{X}\right)^{T}\right]
$$

which has the element at the position (i, j) as

$$
\Sigma_{X}(i, j)=E\left[\left(X_{i}-m_{X_{i}}\right)\left(X_{j}-m_{X_{j}}\right)\right]
$$

- Properties of the covariance matrix
a) Σ_{X} is symmetric
b) The diagonal values are $\Sigma_{X}(i, i)=\operatorname{var}\left(X_{i}\right)$
c) Σ_{X} is non-negative semidefinite, that is

$$
\mathbf{a}^{T} \Sigma_{x} \mathbf{a} \geq 0 \quad \text { for any real vector } \mathbf{a}
$$

Equivalently, the eigenvalues of Σ_{X} are non-negative.

- The correlation matrix is defined as $\mathbf{R}_{X}=E\left[\mathbf{X X}^{T}\right]$. Note that $\sum_{-H a r v a r d ~ S E A S}^{X}=\mathbf{R}_{X}-\mathbf{m}_{X} \mathbf{m}_{X}^{T}$.

Cross-covariance and cross-correlation matrices

- The cross-covariance matrix between two random vectors \mathbf{X} and \mathbf{Y} is

$$
\Sigma_{X Y}=E\left[\left(\mathbf{X}-\mathbf{m}_{X}\right)\left(\mathbf{Y}-\mathbf{m}_{Y}\right)^{T}\right]
$$

a) $\Sigma_{X Y}$ is not necessarily symmetric.
b) $\Sigma_{X Y}=\Sigma_{Y X}^{T}$ (the order of \mathbf{X} and \mathbf{Y} matters).
c) If \mathbf{X} and \mathbf{Y} are uncorrelated, then $\Sigma_{X Y}=\Sigma_{Y X}=\mathbf{0}$.
d) If we stack two vectors as $\mathbf{Z}=\left[\begin{array}{l}\mathbf{X} \\ \mathbf{Y}\end{array}\right]$ then the covariance matrix of \mathbf{Z} is given by

$$
\Sigma_{Z}=\left[\begin{array}{cc}
\Sigma_{X} & \Sigma_{X Y} \\
\Sigma_{Y X} & \Sigma_{Y}
\end{array}\right]
$$

If \mathbf{X} and \mathbf{Y} are uncorrelated, then Σ_{Z} is block-diagonal.

- The cross-correlation matrix between \mathbf{X} and \mathbf{Y} is

$$
R_{X Y}=E\left[\mathbf{X} \mathbf{Y}^{T}\right]=\Sigma_{X Y}+\mathbf{m}_{X} \mathbf{m}_{Y}^{T}
$$

Jointly Gaussian random variables

- Consider a Gaussian vector $\mathbf{X}=\left[X_{1}, \ldots, X_{n}\right]^{T}$ in which X_{i} are jointly Gaussian with
- Mean $\mathbf{m}_{X}=E[\mathbf{X}]$
- Covariance

$$
\Sigma_{X}=E\left[\left(\mathbf{X}-\mathbf{m}_{X}\right)\left(\mathbf{X}-\mathbf{m}_{X}\right)^{T}\right]
$$

- The pdf of \mathbf{X} is

$$
f_{X}(\mathbf{x})=\frac{1}{(2 \pi)^{n / 2} \operatorname{det}\left(\Sigma_{X}\right)^{1 / 2}} \exp \left\{-\frac{1}{2}\left(\mathbf{x}-\mathbf{m}_{X}\right)^{T} \Sigma_{X}^{-1}\left(\mathbf{x}-\mathbf{m}_{X}\right)\right\}
$$

- Linear transformation of a Gaussian vector

$$
\mathbf{Y}=\mathbf{A X}
$$

is a Gaussian vector with mean and covariance as

$$
\begin{aligned}
\mathbf{m}_{Y} & =\mathbf{A m}_{X} \\
\Sigma_{Y} & =\mathbf{A} \Sigma_{X} \mathbf{A}^{T}
\end{aligned}
$$

