Topic 5: Functions of multivariate random variables

- Functions of several random variables
- Random vectors
 - Mean and covariance matrix
 - Cross-covariance, cross-correlation
- Jointly Gaussian random variables

 $\mathsf{ES150}-\mathsf{Harvard}\ \mathsf{SEAS}$

Joint distribution and densities

- Consider *n* random variables $\{X_1, \ldots, X_n\}$.
- The joint distribution is defined as

$$F_{X_1,...,X_n}(x_1,...,x_n) = P[X_1 \le x_1,...,X_n \le x_n]$$

- Discrete r.v.'s: The joint pmf is defined as

$$p_{X_1,\dots,X_n}(x_1,\dots,x_n) = P[X_1 = x_1,\dots,X_n = x_n]$$

 Jointly continuous r.v.'s: The joint pdf can be obtained from the joint cdf as

$$f_{X_1,\dots,X_n}(\mathbf{x}) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F_{X_1,\dots,X_n}(x_1,\dots,x_n)$$

• The marginal density is obtained by integrating (summing) the joint pdf (pmf) over all other random variables

$$f_{X_1}(x_1) = \int \cdots \int f_{X_1,\dots,X_n}(x_1,x_2,\dots,x_n) dx_2\dots dx_n$$

One function of several random variables

• Let Y be a function of several random variables

$$Y = g(X_1, X_2, \dots, X_n)$$

To find the cdf of Y, first find the event

$$\{Y \le y\} \equiv \{R_x \mid \mathbf{x} \in R_x , g(\mathbf{x}) \le y\}$$

then establish

$$F_Y(y) = P[\mathbf{X} \in R_x] = \int \cdots \int_{\mathbf{x} \in R_x} f_X(x_1, \dots, x_n) dx_1 \dots dx_n$$

ES150 – Harvard SEAS

Sum of 2 random variables

• Let X and Y be two random variables and define

$$Z = X + Y.$$

Since $P[Z \leq z] = P[X + Y \leq z]$, the cdf of Z can be expressed as

$$F_Z(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{z-y} f_{X,Y}(x,y) dx dy$$

Thus the pdf of Z is

$$f_Z(z) = \frac{dF_Z(z)}{dz} = \int_{-\infty}^{\infty} f_{X,Y}(x, z - x)dx$$

• If X and Y are *independent* then the pdf of Z is the *convolution* of the two pdf's

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

• Example: Sum of two (correlated) Gaussian random variables is a Gaussian r.v.

ES150 - Harvard SEAS

Linear transformation of random vectors

 $\bullet\,$ Let the random vector ${\bf Y}$ be a linear transformation of ${\bf X}$

$$\mathbf{Y} = \mathbf{A}\mathbf{X}$$

Assume that \mathbf{A} is invertible, then $\mathbf{X} = \mathbf{A}^{-1}\mathbf{Y}$, and the pdf of \mathbf{Y} is

$$f_Y(\mathbf{y}) = f_X\left(\mathbf{A}^{-1}\mathbf{y}\right) / \det(\mathbf{A})$$

• Example: Linear transformation of 2 jointly Gaussian RVs X and Y

$$\begin{bmatrix} V \\ W \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

where

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left\{-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)}\right\}.$$

Show that V and W are independent, zero-mean Gaussian RVs with variance $1 + \rho$ and $1 - \rho$.

ES150 – Harvard SEAS

Transformation of multiple random variables

• Consider multiple functions of multiple jointly continuous random variables X_i as

$$Y_k = g_k(X_1, X_2, \dots, X_n), \quad k = 1, \dots, n$$

Assume that the inverse functions exist such that

$$X_i = h_i(Y_1, Y_2, \dots, Y_n) , \quad i = 1, \dots, n$$

or in the vector form, X = H(Y). Consider the case that these functions are continuous and has continuous partial derivatives. Let

$$dH = \begin{bmatrix} \frac{\partial h_1}{\partial y_1} & \cdots & \frac{\partial h_1}{\partial y_n} \\ \vdots & & \vdots \\ \frac{\partial h_n}{\partial y_1} & \cdots & \frac{\partial h_n}{\partial y_n} \end{bmatrix}$$

then the joint pdf of Y_k is obtained as

$$f_Y(y) = |\det(dH)| f_X(H(y))$$

where det(dH) is the Jacobian of H.

ES150 – Harvard SEAS

• Example: Transformation from the Catersian to polar coordinate. Let $X, Y \sim \mathcal{N}(0, 1)$ be independent. Find the joint pdf of V and W as

$$V = (X^2 + Y^2)^{1/2}$$

 $W = \angle (X, Y) , \quad W \in [0, 2\pi]$

Inverse transformation: $x = v \cos w$ and $y = v \sin w$. The Jacobian is

$$\mathscr{J} = \begin{vmatrix} \cos w & -v \sin w \\ \sin w & v \cos w \end{vmatrix} = v.$$

Since $f_{XY}(x,y) = \frac{1}{2\pi} \exp\{-(x^2 + y^2)/2\}$, we have

$$f_{V,W}(v,w) = \frac{1}{2\pi} v e^{-v^2/2}, \quad v \ge 0, \quad 0 \le w < 2\pi.$$

From this, we can calculate the pdf of V as a *Rayleigh* density

$$f_V(v) = v e^{-v^2/2}$$
, $v \ge 0$.

The angle W is uniform: $f_W(w) = \frac{1}{2\pi}, w \in [0, 2\pi].$

 \Rightarrow The radius V and the angle W are independent!

ES150 – Harvard SEAS

Random vectors, mean and covariance matrices

- Consider a random column vector $\mathbf{X} = [X_1, \dots, X_n]^T$, X_i are RVs.
- The vector mean is $\mathbf{m}_X = E[\mathbf{X}]$ with elements $\bar{X}_i = E[X_i], i = 1, \dots, n$
- The *covariance matrix* of a vector \mathbf{X} is defined as

$$\Sigma_X = E\left[(\mathbf{X} - \mathbf{m}_X)(\mathbf{X} - \mathbf{m}_X)^T \right]$$

which has the element at the position (i, j) as

$$\Sigma_X(i,j) = E\left[(X_i - m_{X_i})(X_j - m_{X_j}) \right]$$

- Properties of the covariance matrix
 - a) Σ_X is symmetric
 - b) The diagonal values are $\Sigma_X(i,i) = \operatorname{var}(X_i)$
 - c) Σ_X is non-negative semidefinite, that is

 $\mathbf{a}^T \Sigma_x \mathbf{a} \ge 0$ for any real vector \mathbf{a}

Equivalently, the eigenvalues of Σ_X are non-negative.

• The correlation matrix is defined as $\mathbf{R}_X = E[\mathbf{X}\mathbf{X}^T]$. Note that $\sum_X = \mathbf{R}_X - \mathbf{m}_X \mathbf{m}_X^T$. ES150 - Harvard SEAS

8

Cross-covariance and cross-correlation matrices

• The cross-covariance matrix between two random vectors **X** and **Y** is

$$\Sigma_{XY} = E\left[(\mathbf{X} - \mathbf{m}_X)(\mathbf{Y} - \mathbf{m}_Y)^T \right]$$

- a) Σ_{XY} is not necessarily symmetric.
- b) $\Sigma_{XY} = \Sigma_{YX}^T$ (the order of **X** and **Y** matters).
- c) If **X** and **Y** are uncorrelated, then $\Sigma_{XY} = \Sigma_{YX} = \mathbf{0}$.
- d) If we stack two vectors as $\mathbf{Z} = \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$ then the covariance matrix of \mathbf{Z} is given by

$$\Sigma_Z = \left[\begin{array}{cc} \Sigma_X & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_Y \end{array} \right]$$

If **X** and **Y** are uncorrelated, then Σ_Z is block-diagonal.

• The cross-correlation matrix between \mathbf{X} and \mathbf{Y} is

$$R_{XY} = E\left[\mathbf{X}\mathbf{Y}^T\right] = \Sigma_{XY} + \mathbf{m}_X\mathbf{m}_Y^T$$

ES150 – Harvard SEAS

Jointly Gaussian random variables

- Consider a Gaussian vector $\mathbf{X} = [X_1, \dots, X_n]^T$ in which X_i are jointly Gaussian with
 - Mean $\mathbf{m}_X = E[\mathbf{X}]$
 - Covariance

$$\Sigma_X = E\left[(\mathbf{X} - \mathbf{m}_X)(\mathbf{X} - \mathbf{m}_X)^T \right]$$

• The pdf of **X** is

$$f_X(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \det(\Sigma_X)^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{m}_X)^T \Sigma_X^{-1}(\mathbf{x} - \mathbf{m}_X)\right\}$$

• Linear transformation of a Gaussian vector

$$\mathbf{Y} = \mathbf{A}\mathbf{X}$$

is a Gaussian vector with mean and covariance as

$$\mathbf{m}_Y = \mathbf{A}\mathbf{m}_X$$
$$\Sigma_Y = \mathbf{A}\Sigma_X\mathbf{A}^T$$

10