
Topic 6: Convergence and Limit Theorems

• Sum of random variables

• Laws of large numbers

• Central limit theorem

• Convergence of sequences of RVs
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Sum of random variables

Let X1, X2, ..., Xn be a sequence of random variables. Define Sn as

Sn = X1 +X2 + · · ·+Xn

• The mean and variance of S become

E[Sn] = E[X1] + E[X2] + · · ·+ E[Xn]

var(Sn) =

n∑

k=1

var(Xk) +

n∑

j=1

j �=k

n∑

k=1

cov(Xj , Xk)

• If X1, X2, ..., Xn are independent random variables, then

var(Sn) =

n∑

k=1

var(Xk)

The characteristic function can be used to calculate the joint pdf as

ΦSn(ω) = E
[
ejωSn

]
= ΦX1(ω) · · · ΦXn(ω)

fSn(x) = F−1 {ΦX1(ω) · · ·ΦXn(ω)}
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Sum of a random number of independent RVs

• Consider the sum of N i.i.d. RVs Xi with finite mean and variance

SN =

N∑
k=1

Xk

where N is a random variable independent of the Xk.

• Using conditional expectation, the mean and variance of SN are

E[SN ] = E [E[SN |N ]] = E[NE[X]] = E[N ]E[X]

var(SN ) = var(N)E[X]2 + E[N ]var(X)

• The characteristic function of SN is

ΦSN
(ω) = E

[
E[ejωSN |N ]

]
= E

[
ΦX(ω)N

]
= E

[
zN

]∣∣
z=ΦX(ω)

= GN (ΦX(ω))

which is the generating function of N evaluated at z = Φ(ω).
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• Example:

– Number of jobs N submitted to the CPU is a geometric RV with

parameter p.

– The excution time of each job is an exponential RV with mean λ.

Find the pdf of the total execution time.
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Laws of large numbers

Let X1, X2, ..., Xn be independent, identically distributed (iid) random

variables with mean E[Xj ] = μ, (μ < ∞).

• The sample mean of the sequence is defined as

Mn =
1

n

n∑
j=1

Xj

• For large n, Mn can be used to estimate μ since

E[Mn] =
1

n

n∑
j=1

E[Xj ] = μ

var(Mn) =
1

n2
var(Sn) =

nσ2

n2
=

σ2

n

– From Chebyshev inequality,

P [|Mn − μ| ≥ ε] ≤ σ2

nε2

or P [|Mn − μ| < ε] ≥ 1 − σ2/nε2

As n → ∞, we have var(Mn) → 0 and σ2/nε2 → 0.
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• The Weak Law of Large Numbers (WLLN)

lim
n→∞

P [|Mn − μ| < ε] = 1 for any ε > 0

The WLLN implies that for a large (fixed) value of n, the sample mean

will be within ε of the true mean with high probability.

• The Strong Law of Large Numbers (SLLN)

P
[

lim
n→∞

Mn = μ
]

= 1

The SLLN implies that, with probability 1, every sequence of sample

means will approach and stay close to the true mean.

Example:

• Given an event A, we can estimate p = P [A] by

– performing a sequence of N Bernoulli trials

– observing the relative frequency of A occurring fA(N)

How large should N be to have

P [|fA(N) − p| ≤ 0.01] ≥ 0.95 ?

i.e., a 0.95 chance that the relative frequency is within 0.01 of P [A]?
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The Central Limit Theorem

• Let X1, X2, ..., Xn be i.i.d. RVs with finite mean and variance

E[Xi] = μ < ∞
var(Xi) = σ2 < ∞

• Let Sn =
∑n

i=1 Xi, and define Zn as

Zn =
Sn − nμ

σ
√

n
,

Zn has zero-mean and unit-variance.

• As n → ∞ then Zn → N (0, 1). That is

lim
n→∞

P [Zn ≤ z] =
1√
2π

∫ z

−∞

e−x2/2 dx.

– Convergence applies to any distribution of X with finite mean and

finite variance.

– This is the Central Limit Theorem (CLT) and is widely used in EE.
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• Examples:

1. Suppose that cell-phone call durations are iid RVs with μ = 8 and

σ = 2 (minutes).

– Estimate the probability of 100 calls taking over 840 minutes.

– After how many calls can we be 90% sure that the total time used

is more than 1000 minutes?

2. Does the CLT apply to Cauchy random variables?
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Gaussian approximation for binomial probabilities

• A Binomial random variable is a sum of iid Bernoulli RVs.

X =
n∑

i=1

Zi , Zi ∼ Bern(p) are i.i.d.

then X ∼ binomial(np).

• By CLT, the Binomial cdf FX(x) approaches a Gaussian cdf

p[X = k] ≈ 1√
2πnp(1 − p)

exp

{
− (k − np)2

2np(1 − p)

}

The approximation is best for k near np.

• Example:

– A digital communication link has bit-error probability p.

– Estimate the probability that a n-bit received message has at least

k bits in error.
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Convergence of sequences of RVs

• Given a sequence of RVs {Xn(ω)}:
– {Xn(ω)} can be viewed as a sequence of functions of ω.

– For each ω ∈ Ω, {Xn(ω)} is a sequence of numbers {x1, x2, x3, . . .}.
– A sequence {xn} is said to converge to x if for any ε > 0, there

exists N such that

|xn − x| < ε for all n > N.

We write xn → x.

• In what sense does {Xn(ω)} converge to a random variable X(ω) as

n → ∞?

Types of convergence for a sequence of RVs:

• Sure convergence: {Xn(ω)} converges surely to X(ω) if

Xn(ω) → X(ω) as n → ∞ for all ω ∈ S

For every ω ∈ S, the sequence {Xn(ω)} converges to X(ω) as n → ∞.
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• Almost-sure convergence: {Xn(ω)} converges almost surely X(ω) if

P [ω : Xn(ω) → X(ω) as n → ∞] = 1

Xn(ω) converges to X(ω) as n → ∞ for all ω in S, except possibly on a

set of zero probability.

– The strong LLN is an example of almost-sure convergence.

• Mean-square convergence: {Xn(ω)} converges in the mean square sense

to X(ω) if

E
[
(Xn(ω) − X(ω))

2
]
→ 0 as n → ∞

Here the convergence is in a sequence of a function of Xn(ω).

– Cauchy criterion:

{Xn(ω)} converges in the mean square sense if and only if

E
[
(Xn(ω) − Xm(ω))

2
]
→ 0 as n → ∞ and m → ∞

• Convergence in probability: {Xn(ω)} converges in probability to X(ω)

if, for any ε > 0,

P [|Xn(ω) − X(ω)| > ε] → 0 as n → ∞
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For each ω ∈ S, the sequence Xn(ω) is not required to stay within ±ε

of X(ω) as n → ∞, but only be within with high probability.

– The WLLN is an example of convergence in probability.

• Convergence in distribution: {Xn(ω)} with cdf {Fn(x)} converges in

distribution to X with cdf F (x) if

Fn(x) → F (x) as n → ∞

for all x at which F (x) is continuous.

– The CLT is an example of convergence in distribution.

• Relationship among different convergences

Almost-Sure
Convergence

Mean Square
Convergence

Convergence in
Probability

Convergence in
Distribution

Sure Convergence

MS convergence does not imply a.s. convergence and vice versa.

ES150 – Harvard SEAS 12


	ADP8A7
	2

